查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數y=a2-x+1(a>0,a≠1)的圖象恒過定點P,則點P的坐標為
(2,2)

查看答案和解析>>

一、選擇題:

1.B   2.C  3.D   4.C   5. B   6.A   7. C   8.A  9.A  10. B 11.B  12. A

二、填空題:

13.       14.      15.       16.     

17. 360     18.      19.       20.1320    21.2/5   22.5    23. 9/8      24. 正四面體內任意一點到各個面的距離之和等于此正四面體的高   25.5/7   26.   

三、解答題:

27解:(I)

(II)由   得

          

x的取值范圍是

28解:(1)甲隊以二比一獲勝,即前兩場中甲勝1場,第三場甲獲勝,其概率為

(2)乙隊以2:0獲勝的概率為;

乙隊以2:1獲勝的概率為

∴乙隊獲勝的概率為P2=P'2+P''2=0.16+0.192=0.352.

29解:(1)

    1. 由①②解得a=1,b=3

      (2)

      30解:(1)設正三棱柱的側棱長為.取中點,連

      是正三角形,

      又底面側面,且交線為

      側面

      ,則直線與側面所成的角為

      中,,解得

      此正三棱柱的側棱長為.                 

       注:也可用向量法求側棱長.

      (2)解法1:過,連,

      側面為二面角的平面角.

      中,,

      ,

      中,

      故二面角的大小為.      

      (3)解法1:由(2)可知,平面,平面平面,且交線為,

      ,則平面

      中,

      中點,到平面的距離為. 

      解法2:(思路)取中點,連,

      ,易得平面平面,且交線為

      過點,則的長為點到平面的距離.

      解法3:(思路)等體積變換:由可求.

      解法4:(向量法,見后)

      題(Ⅱ)、(Ⅲ)的向量解法:

      (2)解法2:如圖,建立空間直角坐標系

      為平面的法向量.

      .取

      又平面的一個法向量

      結合圖形可知,二面角的大小為.     

      (3)解法4:由(2)解法2,

      到平面的距離

      31解:(1)由已知,,),

      ,),且

      ∴數列是以為首項,公差為1的等差數列.

      (2)∵,∴,要使恒成立,

      恒成立,

      恒成立,

      恒成立.

      (?)當為奇數時,即恒成立,

      當且僅當時,有最小值為1,

      (?)當為偶數時,即恒成立,

      當且僅當時,有最大值,

      ,又為非零整數,則

      綜上所述,存在,使得對任意,都有

      32解:(1)∵,∴,

      又∵,∴,

      ,∴橢圓的標準方程為.    

      (2)顯然的斜率不為0,當的斜率不為0時,設方程為,

      代入橢圓方程整理得:

      ,

      即: ,

      當且僅當,即(此時適合于的條件)取到等號.

      ∴三角形△ABF面積的最大值是.                      

       

       


      同步練習冊答案