⑤利用法向量求二面角的平面角定理:設(shè)分別是二面角中平面的法向量.則所成的角就是所求二面角的平面角或其補(bǔ)角大小(方向相同.則為補(bǔ)角.反方.則為其夾角). 查看更多

 

題目列表(包括答案和解析)

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時,求證:

(Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,

又因為,………………2分

,得證。

第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時,存在點Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時,底面ABCD為正方形,

又因為,………………3分

(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時,存在點Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

已知四棱錐P-ABCD的底面ABCD是邊長為2的正方形,PD⊥底面ABCD,E,F(xiàn)分別為棱BC、AD的中點.

(1)求證:DE∥平面PFB;

(2)已知二面角P-BF-C的余弦值為,求四棱錐P-ABCD的體積.

【解析】(1)證:DE//BF即可;

(2)可以利用向量法根據(jù)二面角P-BF-C的余弦值為,確定高PD的值,即可求出四棱錐的體積.也可利用傳統(tǒng)方法直接作出二面角的平面角,求高PD的值也可.在找平面角時,要考慮運(yùn)用三垂線或逆定理.

 

查看答案和解析>>

如圖,已知四棱錐的底面ABCD為正方形,平面ABCD,E、F分別是BC,PC的中點,,

(1)求證:平面;

(2)求二面角的大。

【解析】第一問利用線面垂直的判定定理和建立空間直角坐標(biāo)系得到法向量來表示二面角的。

第二問中,以A為原點,如圖所示建立直角坐標(biāo)系

,,

設(shè)平面FAE法向量為,則

,

 

查看答案和解析>>

(08年永定一中二模理)我們把平面內(nèi)與直線的方向向量垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動點的軌跡方程的方法,可以求出過點且法向量為(點法式)方程為,化簡后得.類比以上求法,在空間直角坐標(biāo)系中,經(jīng)過點,且法向量為的平面(點法式)方程為_______________(請寫出化簡后的結(jié)果).

查看答案和解析>>

已知直三棱柱中, , , 的交點, 若.

(1)求的長;  (2)求點到平面的距離;

(3)求二面角的平面角的正弦值的大小.

【解析】本試題主要考查了距離和角的求解運(yùn)用。第一問中,利用ACCA為正方形, AC=3

第二問中,利用面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

(2)在面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD= … 8分

(3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB

CHE為二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h(huán))  ……… 4分

·=0,  h=3

(2)設(shè)平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

點A到平面ABC的距離為H=||=……… 8分

(3) 設(shè)平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小滿足cos== ………  11分

二面角C-AB-C的平面角的正弦大小為

 

查看答案和解析>>


同步練習(xí)冊答案