證明:建立如圖所示的空間直角坐標(biāo)系.設(shè)正三棱柱的底面邊長(zhǎng)為.側(cè)棱長(zhǎng)為.則. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知ABCD為直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=1,BC=2,E為PC的中點(diǎn),PA⊥平面ABCD,建立如圖所示的空間直角坐標(biāo)系.
(1)寫出點(diǎn)E的坐標(biāo);
(2)能否在BC上找到一點(diǎn)F,使EF⊥CD?若能,請(qǐng)求出點(diǎn)F的位置,若不能,請(qǐng)說明理由;
(3)求證:平面PCB⊥平面PCD.

查看答案和解析>>

已知ABCD為直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=1,BC=2,E為PC的中點(diǎn),PA⊥平面ABCD,建立如圖所示的空間直角坐標(biāo)系.
(1)寫出點(diǎn)E的坐標(biāo);
(2)能否在BC上找到一點(diǎn)F,使EF⊥CD?若能,請(qǐng)求出點(diǎn)F的位置,若不能,請(qǐng)說明理由;
(3)求證:平面PCB⊥平面PCD.

查看答案和解析>>

如圖所示的長(zhǎng)方體中,底面是邊長(zhǎng)為的正方形,的交點(diǎn),,是線段的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:平面;

(Ⅲ)求二面角的大。

【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又平面,平面,∴平面,,又,∴平面. 可得證明

(3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面的法向量.∵,,

為平面的法向量.∴利用法向量的夾角公式,,

的夾角為,即二面角的大小為

方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點(diǎn),

,又點(diǎn),,∴

,且不共線,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵,

,,即,,

,∴平面.   ………8分

(Ⅲ)∵,,∴平面,

為面的法向量.∵,

為平面的法向量.∴,

的夾角為,即二面角的大小為

 

查看答案和解析>>


同步練習(xí)冊(cè)答案