(2) 函數(shù)(的圖像是否有對稱點?若存在則求之.否則說明理由. 2006年上海市普通高等學校招生考試 查看更多

 

題目列表(包括答案和解析)

對于函數(shù),如果存在實數(shù)使得,那么稱的生成函數(shù).

       (1)下面給出兩組函數(shù),是否分別為的生成函數(shù)?并說明理由;

第一組:;

第二組:

       (2)設,生成函數(shù).若不等式

上有解,求實數(shù)的取值范圍;

       (3)設,取,生成函數(shù)圖像的最低點坐標為.若對于任意正實數(shù).試問是否存在最大的常數(shù),使恒成立?如果存在,求出這個的值;如果不存在,請說明理由.

查看答案和解析>>

設函數(shù)f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數(shù)f(x)圖像上的不動點.

(Ⅰ)若函數(shù)f(x)=圖像上有兩點關于原點對稱的不動點,求a、b應滿足的條件;

(Ⅱ)在(Ⅰ)的條件下,若a=8,記函數(shù)f(x)圖像上的兩個不動點分別為A、B,M為函數(shù)圖像上的另一點,且其縱坐標yM>3,求點M到直線AB距離的最小值及取得最小值時M點的坐標;

(Ⅲ)下述命題“若定義在R上的奇函數(shù)f(x)圖像上存在有限個不動點,則不動點有奇數(shù)個”是否正確?若正確,請給予證明,并舉出一例;若不正確,請舉一反例說明.

查看答案和解析>>

已知函數(shù)的周期為,圖像的一個對稱中心為,將函數(shù)圖像上的所有點的橫坐標伸長為原來的2倍(縱坐標不變),在將所得圖像向右平移個單位長度后得到函數(shù)的圖像.

(1)求函數(shù)的解析式;

(2)是否存在,使得按照某種順序成等差數(shù)列?若存在,請確定的個數(shù);     若不存在,說明理由.

(3)求實數(shù)與正整數(shù),使得內(nèi)恰有2013個零點.

查看答案和解析>>

在以O為原點的直角坐標系中,點A(4,-3)為△OAB的直角頂點.已知|AB|=2|OA|,且點B的縱坐標大于零.
(1)求向量的坐標;
(2)求圓關于直線OB對稱的圓的方程;
(3)是否存在實數(shù)a,使函數(shù)的圖像上總有關于直線OB對稱的兩個點?若不存在,說明理由:若存在,求a的取值范圍.

查看答案和解析>>

(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)

在平行四邊形中,已知過點的直線與線段分別相交于點。若

(1)求證:的關系為;

(2)設,定義函數(shù),點列在函數(shù)的圖像上,且數(shù)列是以首項為1,公比為的等比數(shù)列,為原點,令,是否存在點,使得?若存在,請求出點坐標;若不存在,請說明理由。

(3)設函數(shù)上偶函數(shù),當,又函數(shù)圖象關于直線對稱, 當方程上有兩個不同的實數(shù)解時,求實數(shù)的取值范圍。

查看答案和解析>>

一、填空題(本大題滿分48分,每小題4分,共12小題)

1.;   2.;   3.;   4.;   5.;

6.;   7.;   8.;   9.; 10.;

11.;   12..

二、選擇題(本大題滿分16分,每小題4分,共4小題)

13.C;   14.A;   15.B;   16.C;

三、解答題(本大題滿分86分,本大題共有6題)

17.(1)

       

(2);

18.1號至4號正四棱柱形容器是體積依次為。

∵  ,

∴  存在必勝方案,即選擇3號和4號容器。

19.(1)∵  由正弦定理,,∴ ,。

      ∵  , ∴  ,即! 

 (2)∵  ,

∴  。

20.(1)設放水分鐘內(nèi)水箱中的水量為

依題意得;

分鐘時,水箱的水量升, 放水后分鐘水箱內(nèi)水量接近最少;

(2)該淋浴器一次有個人連續(xù)洗浴, 于是,,

所以,一次可最多連續(xù)供7人洗浴。

21.(1)由,∴成等比數(shù)列。

(2)因,由(1)知,,故

(3)設存在,使得成等差數(shù)列,則,

,所以,

∴不存在中的連續(xù)三項使得它們可以構(gòu)成等差數(shù)列。

22.(1)解:設為函數(shù)圖像的一個對稱點,則對于恒成立.即對于恒成立,

,故圖像的一個對稱點為.

(2)解:假設是函數(shù)(的圖像的一個對稱點,

(對于恒成立,

對于恒成立,因為,所以

恒成立,

即函數(shù)(的圖像無對稱點.

 


同步練習冊答案