題目列表(包括答案和解析)
對于函數(shù),如果存在實數(shù)使得,那么稱為的生成函數(shù).
(1)下面給出兩組函數(shù),是否分別為的生成函數(shù)?并說明理由;
第一組:;
第二組:;
(2)設,生成函數(shù).若不等式
在上有解,求實數(shù)的取值范圍;
(3)設,取,生成函數(shù)圖像的最低點坐標為.若對于任意正實數(shù)且.試問是否存在最大的常數(shù),使恒成立?如果存在,求出這個的值;如果不存在,請說明理由.
設函數(shù)f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數(shù)f(x)圖像上的不動點.
(Ⅰ)若函數(shù)f(x)=圖像上有兩點關于原點對稱的不動點,求a、b應滿足的條件;
(Ⅱ)在(Ⅰ)的條件下,若a=8,記函數(shù)f(x)圖像上的兩個不動點分別為A、B,M為函數(shù)圖像上的另一點,且其縱坐標yM>3,求點M到直線AB距離的最小值及取得最小值時M點的坐標;
(Ⅲ)下述命題“若定義在R上的奇函數(shù)f(x)圖像上存在有限個不動點,則不動點有奇數(shù)個”是否正確?若正確,請給予證明,并舉出一例;若不正確,請舉一反例說明.
已知函數(shù)的周期為,圖像的一個對稱中心為,將函數(shù)圖像上的所有點的橫坐標伸長為原來的2倍(縱坐標不變),在將所得圖像向右平移個單位長度后得到函數(shù)的圖像.
(1)求函數(shù)與的解析式;
(2)是否存在,使得按照某種順序成等差數(shù)列?若存在,請確定的個數(shù); 若不存在,說明理由.
(3)求實數(shù)與正整數(shù),使得在內(nèi)恰有2013個零點.
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
在平行四邊形中,已知過點的直線與線段分別相交于點。若。
(1)求證:與的關系為;
(2)設,定義函數(shù),點列在函數(shù)的圖像上,且數(shù)列是以首項為1,公比為的等比數(shù)列,為原點,令,是否存在點,使得?若存在,請求出點坐標;若不存在,請說明理由。
(3)設函數(shù)為上偶函數(shù),當時,又函數(shù)圖象關于直線對稱, 當方程在上有兩個不同的實數(shù)解時,求實數(shù)的取值范圍。
一、填空題(本大題滿分48分,每小題4分,共12小題)
1.; 2.; 3.; 4.; 5.;
6.; 7.; 8.; 9.; 10.;
11.; 12..
二、選擇題(本大題滿分16分,每小題4分,共4小題)
13.C; 14.A; 15.B; 16.C;
三、解答題(本大題滿分86分,本大題共有6題)
17.(1);
(2);
18.1號至4號正四棱柱形容器是體積依次為。
∵ ,,
∴ 存在必勝方案,即選擇3號和4號容器。
19.(1)∵ 由正弦定理,,∴ ,。
∵ , ∴ ,即! 。
(2)∵ ,
∴ 。
20.(1)設放水分鐘內(nèi)水箱中的水量為升
依題意得;
分鐘時,水箱的水量升, 放水后分鐘水箱內(nèi)水量接近最少;
(2)該淋浴器一次有個人連續(xù)洗浴, 于是,,
所以,一次可最多連續(xù)供7人洗浴。
21.(1)由及,∴時成等比數(shù)列。
(2)因,由(1)知,,故。
(3)設存在,使得成等差數(shù)列,則,
即因,所以,
∴不存在中的連續(xù)三項使得它們可以構(gòu)成等差數(shù)列。
22.(1)解:設為函數(shù)圖像的一個對稱點,則對于恒成立.即對于恒成立,
由,故圖像的一個對稱點為.
(2)解:假設是函數(shù)(的圖像的一個對稱點,
則(對于恒成立,
即對于恒成立,因為,所以不
恒成立,
即函數(shù)(的圖像無對稱點.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com