中的x1.x2.不等式 成立.求a的取值范圍. 得分評卷人 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=lnx-
1
2
ax2+bx(a>0),且f′(1)=0
(1)試用含有a的式子表示b,并求f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)f(x)的最大值為g(a),試證明不等式:g(a)>ln(1+
a
2
)-1
(3)首先閱讀材料:對于函數(shù)圖象上的任意兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)圖象上存在點(diǎn)M(x0,y0)(x0∈(x1,x2)),使得f(x)在點(diǎn)M處的切線l∥AB,則稱AB存在“相依切線”特別地,當(dāng)x0=
x1+x2
2
時(shí),則稱AB存在“中值相依切線”.請問在函數(shù)f(x)的圖象上是否存在兩點(diǎn)A(x1,y1),B(x2,y2),使得AB存在“中值相依切線”?若存在,求出一組A、B的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域T;
(2)是否存在實(shí)數(shù)a,對任意給定的集合T中的元素t,在區(qū)間[1,e]上總存在兩個(gè)不同的xi(i=1,2),使得f(xi)=t成立、若存在,求出a的取值范圍;若不存在,請說明理由;
(3 )函數(shù)f(x)圖象上是否存在兩點(diǎn)A(x1,y1)和B(x2,y2),使得割線AB的斜率恰好等于函數(shù)f(x)在AB中點(diǎn)M(x0,y0)處切線的斜率?請寫出判斷過程.

查看答案和解析>>

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域T;
(2)是否存在實(shí)數(shù)a,對任意給定的集合T中的元素t,在區(qū)間[1,e]上總存在兩個(gè)不同的xi(i=1,2),使得f(xi)=t成立、若存在,求出a的取值范圍;若不存在,請說明理由;
(3 )函數(shù)f(x)圖象上是否存在兩點(diǎn)A(x1,y1)和B(x2,y2),使得割線AB的斜率恰好等于函數(shù)f(x)在AB中點(diǎn)M(x0,y0)處切線的斜率?請寫出判斷過程.

查看答案和解析>>

若數(shù)列{an}滿足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數(shù))對任意n∈N*都成立,則我們把數(shù)列{an}稱為“L型數(shù)列”.
(1)試問等差數(shù)列{an}、等比數(shù)列{bn}(公比為r)是否為L型數(shù)列?若是,寫出對應(yīng)p、q的值;若不是,說明理由.
(2)已知L型數(shù)列{an}滿足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的兩根,若b-axi≠0(i=1,2),求證:數(shù)列{an+1-xian}(i=1,2,n∈N*)是等比數(shù)列(只選其中之一加以證明即可).
(3)請你提出一個(gè)關(guān)于L型數(shù)列的問題,并加以解決.(本小題將根據(jù)所提問題的普適性給予不同的分值,最高10分)

查看答案和解析>>

已知函數(shù)f(x)=mx3+nx2(m、n∈R ,m≠0)的圖像在(2,f(2))處的切線與x軸平行.

(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;

(2)證明:對任意實(shí)數(shù)0<x1<x2<1, 關(guān)于x的方程:

在(x1,x2)恒有實(shí)數(shù)解

(3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x0,使得.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:

當(dāng)0<a<b時(shí),(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性)

查看答案和解析>>

.選擇題(本大題共8小題,每小題5分,共40分)

                                                               

(1)B            (2)D            (3)C           (4)B

(5)D            (6)D            (7)A           (8)C

 

二.填空題(本大題共6小題,每小題5分,共30分)

  (9)(1,-1)      (10){y| y>1}, y = 2x-1 (x>1)    (11)

(12)         (13) 2              (14)R, R

三.解答題(本大題共6小題,共80分)

15. 解(Ⅰ)恰有一名男生的概率為. ……………………………3分

 (Ⅱ)至少有一名男生的概率為.       …………………………8分

  (Ⅲ)至多有一名男生的概率為.      …………………………13分

16. 解:(Ⅰ).        ……………………………3分

,cosC=>0,

故在中,是銳角.  ∴,.

.   ……………………7分

(Ⅱ) .          ……………………10分

由正弦定理 .      解得,c=6.

.     ∴,即AC=5 .    ……………………13分

17. 解:(I)依條件得 ,      …………………2分

解得.                       …………………………………………4分

所以an=3+(n-1)=n+2.                 …………………………………………6分

  (II)Pn=, b6=2×26-1=64,

   由>64得n2+5n-128>0.                    ………………………………9分

所以n(n+5)>128.因?yàn)閚是正整數(shù),且n=9時(shí),n(n+5)=126,

 

所以當(dāng)n≥10時(shí),n(n+5)>128.  即n≥10時(shí),Pn> b6.  ……………………………13分

 

18. (Ⅰ)解:∵正三棱柱中AC∥A1C1

∴∠CAD是異面直線AD與A1C1所成的角.         …………………………………2分

連結(jié)CD,易知AD=CD=a,AC= a, 在△ACD中易求出cos∠CAD=.

因此異面直線AD與A1C1所成的角的余弦值為.       …………………………4分

(Ⅱ)解:設(shè)AC中點(diǎn)為G,連結(jié)GB,GD,

∵△ABC是等邊三角形, ∴GB⊥AC.

又DB⊥面ABC, ∴GD⊥AC.

∴∠DGB是所求二面角的平面角.      …………………6分

依條件可求出GB=a.

∴tan∠DGB==.

∴∠DGB=arctan.                   ……………………………………………8分

(Ⅲ)證明:

∵D是B1B的中點(diǎn),∴△C1B1D≌△ABD. ∴AD= C1D. 于是△ADC1是等腰三角形.

∵E是AC1的中點(diǎn), ∴DE⊥AC1.    ………………………………………………10分

∵G是AC的中點(diǎn),∴EG∥C1C∥DB,EG=C1C= DB.

∴四邊形EGBD是平行四邊形.  ∴ED∥GB.

∵G是AC的中點(diǎn),且AB=BC,∴GB⊥AC. ∴ED⊥AC.

∵AC∩AC1=A,

∴ED⊥平面ACC1A1.                  …………………………………………13分

(或證ED∥GB,GB⊥平面ACC1A1得到ED⊥平面ACC1A1.)

 

19. 解:(Ⅰ)∵

.                 ……………………………………3分

得,=0.

方程有兩個(gè)不同的實(shí)根、.

,由可知:

當(dāng)時(shí),

當(dāng);

當(dāng)

是極大值點(diǎn),是極小值點(diǎn).             ……………………………………7分

(Ⅱ)

所以得不等式.

. ………10分

又由(Ⅰ)知,

代入前面的不等式,兩邊除以(1+a),

并化簡得,解之得:,或(舍去).

所以當(dāng)時(shí),不等式成立.          …………………………14分

 

20. 解:(Ⅰ)∵

.             ………………………………………………2分

又橢圓C經(jīng)過點(diǎn)B(0,-1),解得b2=1.

所以a2=2+1=3. 故橢圓C的方程為.      ……………………………4分

(Ⅱ)設(shè)l的方程為:y= kx+m,M(x1,y1)、N(x2,y2),

.

 則x1+x2= -.  ………………6分

 Δ=36 k2m2-12(m2-1)(1+3k2)=12[3k2-m2+1]>0       ①

 

設(shè)線段MN的中點(diǎn)G(x0,y0), 

  x0=,

線段MN的垂直平分線的方程為:y -.…………………8分

∵|, ∴線段MN的垂直平分線過B(0,-1)點(diǎn).

∴-1-.     ∴m=.      ②

②代入①,得3k2 -(.   ③

∵|的夾角為60°,∴△BMN為等邊三角形.

∴點(diǎn)B到直線MN的距離d=.            ……………………………10分

,

又∵|MN|=

=

=,

.             ……………………………12分

解得k2=,滿足③式.  代入②,得m=.

直線l的方程為:y=.               ……………………………14分


同步練習(xí)冊答案