13.曲線y=4-x2與X軸的圍成的圖形面積為 查看更多

 

題目列表(包括答案和解析)

曲線y=4-x2與X軸的圍成的圖形面積為________。

查看答案和解析>>

曲線y=-x3+x2+2x與x軸所圍成圖形的面積為

[  ]

A.

B.3

C.

D.4

查看答案和解析>>

曲線y=4-x2與X軸的圍成的圖形面積為________.

查看答案和解析>>

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

定義F(x,y)=(1+x)y,x,y∈(0,+∞),

(Ⅰ)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點(diǎn)A(0,m),過坐標(biāo)原點(diǎn)O向曲線C1作切線,切點(diǎn)為B(n,t)(n>0),設(shè)曲線C1在點(diǎn)A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值;

(Ⅱ)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實(shí)數(shù)b使得曲線C2在x0(-4<x0<-1)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍;

(Ⅲ)當(dāng)且x<y時(shí),證明F(x,y)>F(y,x).

查看答案和解析>>

一、選擇題     DBDAC    DCCCD    CB 

<i id="gpw6y"></i>
<small id="gpw6y"><mark id="gpw6y"></mark></small>

天星

13.;           14.-10,2;   15.;              16.540

三、簡(jiǎn)答題

17.(1),

          cosC=,C=

   (2)c2=a2+b2-2abcosC,c=,=a2+b2-ab=(a+b)2-3ab.

S=abs1nC=abs1n=ab=

            Ab=6,(a+b)2=+3ab=+18=,a+b=

18.方法一:(1)解:取AD中點(diǎn)O,連結(jié)PO,BO.

              △PAD是正三角形,所以PO⊥AD,…………1分

              又因?yàn)槠矫鍼AD⊥平面ABCD,所以,PO⊥平面ABCD, …………3分

              BO為PB在平面ABCD上的射影, 

所以∠PBO為PB與平面ABCD所成的角.…………4分

              由已知△ABD為等邊三角形,所以PO=BO=,

所以PB與平面ABCD所成的角為45°     ………5分

   (2)△ABD是正三角形,所以AD⊥BO,所以AD⊥PB,  ………………6分

              又,PA=AB=2,N為PB中點(diǎn),所以AN⊥PB,    ………………8分

              所以PB⊥平面ADMN.              ………………9分

   (3)連結(jié)ON,因?yàn)镻B⊥平面ADMN,所以O(shè)N為PO在平面ADMN上的射影,

              因?yàn)锳D⊥PO,所以AD⊥NO,             ………………11分

              故∠PON為所求二面角的平面角.            ………………12分

              因?yàn)椤鱌OB為等腰直角三角形,N為斜邊中點(diǎn),所以∠PON=45°,

19.(1)隨意抽取4件產(chǎn)品檢查是隨機(jī)事件,而第一天有9件正品

           第一天通過檢查的概率為               ……5分

(2)同(1),第二天通過檢查的概率為           ……7分

          因第一天,第二天是否通過檢查相互獨(dú)立

          所以,兩天全部通過檢查的概率為:           ……10分

(3)記得分為,則的值分別為0,1,2

                             ……11分

                            ……12分

                                     ……13分

因此,    

20.(1)yn=2logaxn,yn+1=2logaxn+1 ,yn+1 ? yn=2[logaxn+1 ? logaxn]=2loga

{xn}為等比數(shù),為定值,所以{yn}為等差數(shù)列

又因?yàn)閥6- y3=3d=-6,d=-2,y1=y3-2d =22,

Sn=22n+= - n2+23n,故當(dāng)n=11或n=12時(shí),Sn取得最大值132

(2)yn=22+(n-1)(-2)=2logaxn,xn=a12n>1

當(dāng)a>1時(shí),12-n>0,   n<12;當(dāng)0<a<1時(shí),12-n<0   n>12,

              所以當(dāng)0<a<1時(shí),存在M=12,當(dāng)n>M時(shí),xn>1恒成立。

21.(1)設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

,解得,所以

當(dāng)且僅當(dāng)時(shí),取到最大值

(2)由,

,

.  ②

設(shè)的距離為,則,又因?yàn)?sub>,

所以,代入②式并整理,得

解得,,代入①式檢驗(yàn),,

故直線的方程是

,或

22.(1)由K=e得f(x)=ex-ex, 所以f’(x)=ex-e. 由f’(x)>0得x>1,故f(x)的單調(diào)增區(qū)間

為(1,+∞),由f’(x)<0得x<1,故f(x)的單調(diào)遞減區(qū)間為(-∞,1)(3分)

   (2)由f(|x|)>0對(duì)任意x∈R成立等價(jià)于f(x)>0對(duì)任意x≥0成立。由f’(x)=ex-k=0得x=lnk.  

①當(dāng)k∈(0,1) 時(shí) ,f’(x)=ex-k ≥1-k≥0(x>0),此時(shí)f(x)在(0,+∞上單調(diào)遞增,故f(x)

≥f(0)==1>),符合題意。②當(dāng)k∈(1,+∞)時(shí),lnk>0,當(dāng)X變化時(shí),f’(x)、f(x)的變化情況

如下表:

X

(0,lnk)

lnk

(lnk,+ ∞)

f’(x)

0

+

f(x)

單調(diào)遞減

極小值

單調(diào)遞增

 

 

 

由此可得,在(0,+∞)上f(x)≥f(lnk)=k-lnk.依題意,k-klnk>0,又k>1,所以1<k<e.

綜上所述,實(shí)數(shù)k的取值范圍是0<k<e.  (8分)

    (3)因?yàn)镕(x)=f(x)+f(-x)=ex+ex,所以F(x1)F(x2)=

,

所以F(1)F(    n)>en+1+2,F(2)F(n-1)>en+1+2……F(n)F(1)>en+1+2.

由此得,[F(1)F(2)…F(n)]2=[F(1)F(n)][F(2)F(n-1)]…[F(n)F(1)]>(en+1+2)n

故F(1)F(2)…F(n)>(en+1+2) ,n∈N*     …….12分

 


同步練習(xí)冊(cè)答案