[答案]本題立意:本題主要考查平面幾何知識(shí)及三角函數(shù)的化簡(jiǎn)與求值.是考查學(xué)生能力的一道好題.新課程卷 查看更多

 

題目列表(包括答案和解析)

如圖所示,四面體被一平面所截,截面是一個(gè)平行四邊形.求證:;

【答案】(理)證明:EH∥FG,EH,

EH∥面,又CDEH∥CD, 又EH面EFGH,CD面EFGH

EH∥BD  

【解析】本試題主要是考查了空間四面體中線面位置關(guān)系的判定。

要證明線面平行可知通過(guò)線線平行,結(jié)合判定定理得到結(jié)論。

 

查看答案和解析>>

過(guò)拋物線的對(duì)稱軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn).

(I)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;

(II)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.

【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的能力.

(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得 

 (2)中:因?yàn)槿龡l直線AN,MN,BN的斜率成等差數(shù)列,下證之

設(shè)點(diǎn)N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=

  

KAN+KBN=+

本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的能力.

 

查看答案和解析>>

設(shè)函數(shù),的值域是

(A) (B) (C)(D)

【答案】D

查看答案和解析>>

【解析】Ti關(guān)系如下圖:

T

1

i

2

3

4

5

6

【答案】

查看答案和解析>>

設(shè)函數(shù),的值域是

(A) (B) (C)(D)

【答案】D

查看答案和解析>>


同步練習(xí)冊(cè)答案