半徑為的球面上有10個點.其中有四點共面.其它無四點共面.任意連接其中兩點得一系列空間直線.這些直線中可構(gòu)成多少對異面直線.A.627 B.630 C.621 D.無法確定 查看更多

 

題目列表(包括答案和解析)

(江西卷理10)連結(jié)球面上兩點的線段稱為球的弦。半徑為4的球的兩條弦、的長度分別等于、,、分別為、的中點,每條弦的兩端都在球面上運動,有下列四個命題:

①弦、可能相交于點         ②弦可能相交于點

的最大值為5                    ④的最小值為1

其中真命題的個數(shù)為

A.1個          B.2個            C.3個            D.4個

查看答案和解析>>

(江西卷理10)連結(jié)球面上兩點的線段稱為球的弦。半徑為4的球的兩條弦的長度分別等于,、分別為、的中點,每條弦的兩端都在球面上運動,有下列四個命題:

①弦、可能相交于點         ②弦、可能相交于點

的最大值為5                    ④的最小值為1

其中真命題的個數(shù)為

A.1個          B.2個            C.3個            D.4個

查看答案和解析>>

(08年泉州一中適應性練習文)球面上有3個點,其中任意兩點的球面距離都等于大圓周長的,經(jīng)過這3個點的小圓的周長為,那么這個球的半徑為(   )

A.4        B.2        C.2                D.

查看答案和解析>>

一、選擇題

DDDCC         CDAAB

二、填空題

11、           12、        13、     14、17    0     15、②③

三、解答題

16、⑴

         

      

 

17、(1),其定義域為.

.……………………………………………………2′

時,時,故當且僅當時,.   6′

(2)

由(1)知,     …………………………9′

…………………………………………12′′18、(1)符合二項分布

0

1

2

3

4

5

6

……6′

(2)可取15,16,18.

*表示勝5場負1場,;………………………………7′

表示勝5場平1場,;………………………………8′

*表示6場全勝,.……………………………………………9′

.………………………………………………………………12(

19、解:(1)以所在直線為軸,以所在直線為軸,以所在直線為軸,建立如圖所示的空間直角坐標系,由題意可知、、………2′

                   的坐標為     

,              

                      而,

的公垂線…………………………………………………………4′

(2)令面的法向量,

,則,即而面的法向量

……6′ ∴二面角的大小為.……8′

(3)    面的法向量為     到面的距離為

     即到面的距離為.…………12′

20、解:(1)假設存在,使,則,同理可得,以此類推有,這與矛盾。則不存在,使.……3分

(2)∵當時,

,,則

相反,而,則.以此類推有:

;……7分

(3)∵當時,,,則

 …9分

 ()……10分

.……12分

21、解(1)設     

          

①-②得

   ……………………2′

直線的方程是  整理得………………4′

(2)聯(lián)立解得

的方程為聯(lián)立消去,整理得

………………………………6′

 

          又

…………………………………………8′

(3)直線的方程為,代入,得

………………………………………………10′

三點共線,三點共線,且在拋物線的內(nèi)部。

故由可推得

  同理可得:

………………………………14′

 

 


同步練習冊答案