如圖.正四面體中.是底面上的高.為的中點.則與所成角的余弦值為 . 16,已知點為的準(zhǔn)線與軸的交點,點為焦點.點為拋物線上兩個點.若.則向量與的夾角為 . 查看更多

 

題目列表(包括答案和解析)

如圖所示,正四棱臺ABCD-A1B1C1D1是由一個正三棱錐S-ABCD(底面為正方形,頂點在底面上的射影為底面正方形的中心)被平行于底面的平面截所得.已知正四棱臺ABCD-A1B1C1D1下底面邊長為2,上底面邊長為1,高為2.
(1)求四棱臺ABCD-A1B1C1D1的體積;
(2)求正四棱錐S-ABCD的體積;
(3)證明:AA1∥平面BDC1

查看答案和解析>>

在Rt△ABC中,CA⊥CB,斜邊AB上的高為h1,則
1
h
2
1
=
1
|CA|2
+
1
|CB|2
;
類比此性質(zhì),如圖,在四面體P-ABC中,若PA,PB,PC兩兩垂直,
底面ABC上的高為h,則得到的一個正確結(jié)論是
1
h2
=
1
|PA|2
+
1
|PB|2
+
1
|PC|2
1
h2
=
1
|PA|2
+
1
|PB|2
+
1
|PC|2

查看答案和解析>>

在Rt△ABC中,CA⊥CB,斜邊AB上的高為h1,則
1
h21
=
1
|CA|2
+
1
|CB|2
;
類比此性質(zhì),如圖,在四面體P-ABC中,若PA,PB,PC兩兩垂直,
底面ABC上的高為h,則得到的一個正確結(jié)論是______.

查看答案和解析>>

在Rt△ABC中,CA⊥CB,斜邊AB上的高為;

類比此性質(zhì),如圖,在四面體P-ABC中,若PA,PB,PC兩兩垂直,底面ABC上的高為h,則得到的一個正確結(jié)論是________

查看答案和解析>>

精英家教網(wǎng)如圖,設(shè)S-ABCD是一個高為3的四棱錐,底面ABCD的邊長為2的正方形,頂點S在底面上的射影是正方形ABCD的中心,K是棱SC的中點,過AK作平面與線段SB,SD分別交于M,N(M,N可以是線段的端點).
(1)求直線AK平面SBC所成角的正弦值;
(2)當(dāng)M是SB中點時,求四棱錐 S-AMKN 的體積.

查看答案和解析>>

1.解析:,故選A。

2.解析:∵

,

故選B。

3.解析:由,得,此時,所以,,故選C。

4.解析:顯然,若與共線,則與共線;若與共線,則,即,得,∴與共線,∴與共線是與共線的充要條件,故選C。

5.解析:設(shè)公差為,由題意得,;,解得或,故選C。

6.解析:∵雙曲線的右焦點到一條漸近線的距離等于焦距的,∴,又∵,∴,∴,∴雙曲線的離心率是。故選B.

7.解析:∵、為正實數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因為函數(shù)在是增函數(shù),∴,故恒成立的不等式是①③④。故選C.

8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。

9.解析:∵

,此函數(shù)的最小值為,故選C。

10.解析:如圖,∵正三角形的邊長為,∴,∴,又∵,∴,故選D。

11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A

12.解析:如圖,①當(dāng)或時,圓面被分成2塊,涂色方法有20種;②當(dāng)或時,圓面被分成3塊,涂色方法有60種;

③當(dāng)時,圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。

13.解析:做出表示的平面區(qū)域如圖,當(dāng)直線經(jīng)過點時,取得最大值5。

14.解析:∵,∴時,,又時,滿足上式,因此,,

∴。

15.解析:設(shè)正四面體的棱長為,連,取的中點,連,∵為的中點,∴∥,∴或其補角為與所成角,∵,,∴,∴,又∵,∴,∴與所成角的余弦值為。

16.解析:∵,∴,∵點為的準(zhǔn)線與軸的交點,由向量的加法法則及拋物線的對稱性可知,點為拋物線上關(guān)于軸對稱的兩點且做出圖形如右圖,其中為點到準(zhǔn)線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量與的夾角為。

17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分

∴,,………4分

(Ⅱ)∵,,∴,∴,………………………6分

又∵,∴,∴,………………………8分

∴!10分

18.解析:(Ⅰ)∵,∴;……………………理3文4分

(Ⅱ)∵三科會考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分

(Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評為三好學(xué)生的概率為。……………………12分

∵,,,!9分

∴的分布列如下表:

0

1

2

3

∴的數(shù)學(xué)期望!12分

19.(12分)解析:(Ⅰ)時,

,,

    

由得, 或   ………3分

 

 

+

0

0

+

遞增

極大值

遞減

極小值

遞增

,      ………………………6分

(Ⅱ)在定義域上是增函數(shù),

對恒成立,即              

   ………………………9分

又(當(dāng)且僅當(dāng)時,)

                

 ………………………4分

              

20.解析:(Ⅰ)∵∥,,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴!4分

(Ⅱ)∵平面,∴,,∴為二面角的平面角,………………………6分

,,∴,又∵平面,,∴,∴二面角的正切值的大小為!8分

(Ⅲ)過點做∥,交于點,∵平面,∴為在平面內(nèi)的射影,∴為與平面所成的角,………………………10分

∵,∴,又∵∥,∴和與平面所成的角相等,∴與平面所成角的正切值為。………………………12分

解法2:如圖建立空間直角坐標(biāo)系,(Ⅰ)∵,,∴點的坐標(biāo)分別是,,,∴,,設(shè),∵平面,∴,∴,取,∴,∴!4分

(Ⅱ)設(shè)二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為!8分

(Ⅲ)設(shè)與平面所成角的大小為,∵平面的法向量是,,∴,∴,∴與平面所成角的正切值為。………………………12分

21.(Ⅰ) 解析:如圖,設(shè)右準(zhǔn)線與軸的交點為,過點分別向軸及右準(zhǔn)線引垂線,∵,∴,又∵ ∥,∴,………………………2分

∴,又∵,∴,又∵,解得,∴,∴雙曲線的方程為。………………………4分

(Ⅱ)聯(lián)立方程組   消得:

                 

由直線與雙曲線交于不同的兩點得:

即   于是 ,且    ………………①………………………6分

設(shè)、,則

……………………9分

又,所以,解得      ……………②   

由①和②得    即 或

故的取值范圍為!12分

22.(12分)解析:(Ⅰ)∵,∴,∴,∴數(shù)列是等差數(shù)列,………………………2分

又∵,,∴公差為2,

∴,………………………4分

(Ⅱ)∵,∴,

∴數(shù)列是公比為2的等比數(shù)列,

∵,∴,………………………6分

(Ⅲ)∵,

∴………………………8分

∴………………………10分

∵,∴,又∵,∴………………………12分

 

 


同步練習(xí)冊答案