(1)求隊勝場的分布列與期望, 查看更多

 

題目列表(包括答案和解析)

(14分)今有甲、乙兩個籃球隊進行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊在每場比賽中獲勝的概率都是.并記需要比賽的場數(shù)為ξ.
(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列與數(shù)學期望.

查看答案和解析>>

(14分)今有甲、乙兩個籃球隊進行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊在每場比賽中獲勝的概率都是.并記需要比賽的場數(shù)為ξ.

 

(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列與數(shù)學期望.

 

查看答案和解析>>

(14分)今有甲、乙兩個籃球隊進行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊在每場比賽中獲勝的概率都是.并記需要比賽的場數(shù)為ξ.

(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列與數(shù)學期望.

查看答案和解析>>

(14分)今有甲、乙兩個籃球隊進行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊在每場比賽中獲勝的概率都是.并記需要比賽的場數(shù)為ξ.
(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列與數(shù)學期望.

查看答案和解析>>

今有甲、乙兩個籃球隊進行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊在每場比賽中獲勝的概率都是數(shù)學公式.并記需要比賽的場數(shù)為X.
(Ⅰ)求X大于5的概率;
(Ⅱ)求X的分布列與數(shù)學期望.

查看答案和解析>>

一、選擇題

DDDCC         CDAAB

二、填空題

11、           12、        13、     14、17    0     15、②③

三、解答題

16、⑴

         

      

 

17、(1),其定義域為.

.……………………………………………………2′

時,時,故當且僅當時,.   6′

(2)

由(1)知,     …………………………9′

…………………………………………12′′18、(1)符合二項分布

0

1

2

3

4

5

6

……6′

(2)可取15,16,18.

*表示勝5場負1場,;………………………………7′

表示勝5場平1場,;………………………………8′

*表示6場全勝,.……………………………………………9′

.………………………………………………………………12(

19、解:(1)以所在直線為軸,以所在直線為軸,以所在直線為軸,建立如圖所示的空間直角坐標系,由題意可知、、………2′

                   的坐標為     

,              

                      而,

的公垂線…………………………………………………………4′

(2)令面的法向量,

,則,即而面的法向量

……6′ ∴二面角的大小為.……8′

(3)    面的法向量為     到面的距離為

     即到面的距離為.…………12′

20、解:(1)假設(shè)存在,使,則,同理可得,以此類推有,這與矛盾。則不存在,使.……3分

(2)∵當時,

,則

相反,而,則.以此類推有:

,;……7分

(3)∵當時,,,則

 …9分

。)……10分

.……12分

21、解(1)設(shè)     

          

①-②得

   ……………………2′

直線的方程是  整理得………………4′

(2)聯(lián)立解得

設(shè)

的方程為聯(lián)立消去,整理得

………………………………6′

 

          又

…………………………………………8′

(3)直線的方程為,代入,得

………………………………………………10′

三點共線,三點共線,且在拋物線的內(nèi)部。

故由可推得

  同理可得:

………………………………14′

 

 


同步練習冊答案