(3)求點到面的距離. 查看更多

 

題目列表(包括答案和解析)









(1)求點到平面的距離;
(2)求與平面所成角的大小。

查看答案和解析>>

動點與定點的距離和它到直線的距離之比是常數(shù),記點的軌跡為曲線.

(I)求曲線的方程;

(II)設直線與曲線交于兩點,為坐標原點,求面積的最大值.

 

查看答案和解析>>

動點與定點的距離和它到直線的距離之比是常數(shù),記點的軌跡為曲線.
(I)求曲線的方程;
(II)設直線與曲線交于兩點,為坐標原點,求面積的最大值.

查看答案和解析>>

動點與定點的距離和它到直線的距離之比是常數(shù),記點的軌跡為曲線.
(I)求曲線的方程;
(II)設直線與曲線交于兩點,為坐標原點,求面積的最大值.

查看答案和解析>>

精英家教網(wǎng)如圖,球心到截面的距離為半徑的一半,BC是截面圓的直徑,D是圓周上一點,CA是球O的直徑.
(1)求證:平面ABD⊥平面ADC;
(2)如果球半徑是
13
,D分
BC
為兩部分,且
BD
DC
=1:2
,求AC與BD所成的角.

查看答案和解析>>

一、選擇題

DDDCC         CDAAB

二、填空題

11、           12、        13、     14、17    0     15、②③

三、解答題

16、⑴

         

      

 

17、(1),其定義域為.

.……………………………………………………2′

時,時,故當且僅當時,.   6′

(2)

由(1)知,     …………………………9′

…………………………………………12′′18、(1)符合二項分布

0

1

2

3

4

5

6

……6′

(2)可取15,16,18.

*表示勝5場負1場,;………………………………7′

表示勝5場平1場,;………………………………8′

*表示6場全勝,.……………………………………………9′

.………………………………………………………………12(

19、解:(1)以所在直線為軸,以所在直線為軸,以所在直線為軸,建立如圖所示的空間直角坐標系,由題意可知、、………2′

                   的坐標為     

,              

                      而,

的公垂線…………………………………………………………4′

(2)令面的法向量,

,則,即而面的法向量

……6′ ∴二面角的大小為.……8′

(3)    面的法向量為     到面的距離為

     即到面的距離為.…………12′

20、解:(1)假設存在,使,則,同理可得,以此類推有,這與矛盾。則不存在,使.……3分

(2)∵當時,

,,則

相反,而,則.以此類推有:

,;……7分

(3)∵當時,,則

 …9分

。)……10分

.……12分

21、解(1)設     

          

①-②得

   ……………………2′

直線的方程是  整理得………………4′

(2)聯(lián)立解得

的方程為聯(lián)立消去,整理得

………………………………6′

 

          又

…………………………………………8′

(3)直線的方程為,代入,得

………………………………………………10′

三點共線,三點共線,且在拋物線的內(nèi)部。

、

故由可推得

  同理可得:

………………………………14′

 

 


同步練習冊答案