題4分.對于定義在上的函數(shù).可以證明點(diǎn)是圖像的一個(gè)對稱點(diǎn)的充要條件是,.(1) 求函數(shù)圖像的一個(gè)對稱點(diǎn),(2)函數(shù)在R上是奇函數(shù).求a,b滿足的條件,并討論在區(qū)間[-1.1]上是否存在常數(shù)a.使得恒成立?(3)試寫出函數(shù)的圖像關(guān)于直線對稱的充要條件,利用所學(xué)知識.研究函數(shù)圖像的對稱性. 南匯區(qū)2009年高考模擬考試高三數(shù)學(xué)文科答案 查看更多

 

題目列表(包括答案和解析)

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

現(xiàn)有變換公式可把平面直角坐標(biāo)系上的一點(diǎn)變換到這一平面上的一點(diǎn).

(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個(gè)焦點(diǎn)、經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);

(2) 若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱點(diǎn)是曲線在變換下的不動(dòng)點(diǎn). 求(1)中的橢圓在變換下的所有不動(dòng)點(diǎn)的坐標(biāo);

(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動(dòng)點(diǎn)的存在情況和個(gè)數(shù).

查看答案和解析>>

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

定義變換可把平面直角坐標(biāo)系上的點(diǎn)變換到這一平面上的點(diǎn).特別地,若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱點(diǎn)是曲線在變換下的不動(dòng)點(diǎn).

(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時(shí),其兩個(gè)焦點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);

(2)當(dāng)時(shí),求(1)中的橢圓在變換下的所有不動(dòng)點(diǎn)的坐標(biāo);

(3)試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的雙曲線在變換

,)下的不動(dòng)點(diǎn)的存在情況和個(gè)數(shù).

查看答案和解析>>

(本題滿分18分,第1小題4分,第2小題6分,第3小題8分)

已知數(shù)列{an}滿足,(其中λ≠0且λ≠–1,n∈N*),為數(shù)列{an}的前項(xiàng)和.

(1) 若,求的值;

(2) 求數(shù)列{an}的通項(xiàng)公式;

(3) 當(dāng)時(shí),數(shù)列{an}中是否存在三項(xiàng)構(gòu)成等差數(shù)列,若存在,請求出此三項(xiàng);若不存在,請說明理由.

 

查看答案和解析>>

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

定義變換可把平面直角坐標(biāo)系上的點(diǎn)變換到這一平面上的點(diǎn).特別地,若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱點(diǎn)是曲線在變換下的不動(dòng)點(diǎn).

(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時(shí),其兩個(gè)焦點(diǎn)、經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);

(2)當(dāng)時(shí),求(1)中的橢圓在變換下的所有不動(dòng)點(diǎn)的坐標(biāo);

(3)試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的雙曲線在變換

,)下的不動(dòng)點(diǎn)的存在情況和個(gè)數(shù).

 

查看答案和解析>>

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

現(xiàn)有變換公式可把平面直角坐標(biāo)系上的一點(diǎn)變換到這一平面上的一點(diǎn).

(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個(gè)焦點(diǎn)、經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);

(2) 若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱點(diǎn)是曲線在變換下的不動(dòng)點(diǎn). 求(1)中的橢圓在變換下的所有不動(dòng)點(diǎn)的坐標(biāo);

(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動(dòng)點(diǎn)的存在情況和個(gè)數(shù).

 

查看答案和解析>>


同步練習(xí)冊答案