題目列表(包括答案和解析)
(本小題滿分12分)
甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約,甲表示只要面試
合格就簽約.乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約.設(shè)每人面試合格的概率都是,且面試是否合格互不影響.求:
(Ⅰ)至少有1人面試合格的概率;
(Ⅱ)簽約人數(shù)的分布列和數(shù)學(xué)期望.
(本小題滿分12分) 甲、乙兩人參加某電視臺(tái)舉辦的答題闖關(guān)游戲,按照規(guī)則,
甲先從道備選題中一次性抽取道題獨(dú)立作答,然后由乙回答剩余題,每人答對其中
題就停止答題,即闖關(guān)成功.已知在道備選題中,甲能答對其中的道題,乙答對每道題
的概率都是.
(Ⅰ)求甲、乙至少有一人闖關(guān)成功的概率;
(Ⅱ)設(shè)甲答對題目的個(gè)數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.
(本小題滿分12分)
甲、乙二名射擊運(yùn)動(dòng)員參加今年深圳舉行的第二十六屆世界大學(xué)生夏季運(yùn)動(dòng)會(huì)的預(yù)選賽,他們分別射擊了4次,成績?nèi)缦卤恚▎挝唬涵h(huán)):
甲 | 5 | 6 | 9 | 10 |
乙 | 6 | 7 | 8 | 9 |
(本小題滿分12分)甲、乙等名同學(xué)參加某高校的自主招生面試,已知采用抽簽的方式隨機(jī)確定各考生的面試順序(序號(hào)為).
(Ⅰ)求甲、乙兩考生的面試序號(hào)至少有一個(gè)為奇數(shù)的概率;
(Ⅱ)記在甲、乙兩考生之間參加面試的考生人數(shù)為,求隨機(jī)變量的分布列與期望.
(本小題滿分12分)甲、乙等五名環(huán)保志愿者被隨機(jī)地分到四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.
(1)求甲、乙兩人同時(shí)參加崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率;
(3)設(shè)隨機(jī)變量為這五名志愿者中參加崗位服務(wù)的人數(shù),求的分布列.
一、選擇題:1~12(5×12=60)
題號(hào)
01
02
03
04
05
06
07
08
09
10
11
12
答案
B
B
A
B
C
D
B
C
B
C
C
D
二、填空題:13、B;14、-;15、32005;16、(2-2,2)。
三、解答題:
17.解:(1)根據(jù)已知條件得:△=16sin2θ-4atanθ=0
即:a=2sin2θ 2分
又由已知:
得 4分
所以有0<sin2θ<1
所以a∈(0,2) 6分
(2)當(dāng)a=時(shí)由(1)得2sin2θ= 8分
所以sinθ=,而sin2θ=-cos(+2θ)
=-2cos2()+1= 10分
所以cos2()=,又
所以cos()=- 12分
18.(九A解法)解:(1)取AC、CC1中點(diǎn)分別為M、N,連接MN、NB1、MB1,
∵AC1∥MN,NB1∥CE
∴∠MNB1是CE與AC1成角的補(bǔ)角 2分
Rt△NB
Rt△MNC中,MN=6
Rt△MBB1中,MB1=
∴cos∠MNB1=-
∴CE與AC1的夾角為arccos 4分
(2)過D作DP∥AC交BC于P,則A1D在面BCC1B1上的射影為C1P,而CE⊥A1D,由三垂線定理的逆定理可得CE⊥C1P,又BCC1B為正方形
∴P為BC中點(diǎn),D為AB中點(diǎn), 6分
∴CD⊥AB,CD⊥AA1
∴CD⊥面ABB
(3)由(2)CD⊥面A1DE
∴過D作DF⊥A1E于F,連接CF
由三垂線定理可知CF⊥A1E
∴∠CFD為二面角C-A1E-D的平面角 10分
又∵A1D=
∴A1D2+DE2=A1E2=324
∴∠A1DE=90°
∴DF=6,又CD=6
∴tan∠CFD=1
∴∠CFD=45°
∴二面角C-A1E-D的大小為45° 12分
(此題也可通過建立空間直角坐標(biāo)系,運(yùn)用向量的方法求解)
19.解:由已知得:
不等式x2+px-4x-p+3>0,在p∈[0,4]上恒成立
即:p(x-1)+x2-4x+3>0,在p∈[0,4]上恒成立
令f(p)=p(x-1)+x2-4x+3
則有函數(shù)f(p)在p∈[0,4]上大于零恒成立。 4分
(1)顯然當(dāng)x=1時(shí)不恒成立
(2)當(dāng)x≠1時(shí),有即x>3或x<-1 10分
所以x∈(3+∞)U(-∞,-1)為所求 12分
20.解:(1)ξ=0、1、2、3
P(ξ=0)=
P(ξ=1)=
P(ξ=2)=
P(ξ=3)=
∴Eξ=1× 6分
(2)設(shè)甲考試合格為事件A,乙考試合格為事件B,A、B為相互獨(dú)立事件
P(A)=P(ξ=2)+P(ξ=3)=
P(B)=
甲、乙兩人均不合格為事件
p()=[1-P(A)][1-P(B)]=
∴甲、乙兩人至少有一人合各的概率為 12分
21.解:(1)∵AB方程是y=3x+1,則
得(1+
∴x A =-,同理BC方程是y=-
可得xc= 2分
∴|AB|=|xA-0|?
|BC|=|xc-0|? 4分
∵|AB|=|BC|
∴=解得a2=
∴橢圓方程為 6分
(2)設(shè)AB:y=kx+1(不妨設(shè)k>0且k≠1)代入
整理得(1+a2k2)x2+a2kx=0
∴xA=-,同理xc= 8分
∴|AB|=,
|BC|=
又|AB|=|BC|
∴整理得
(k-1)[k2+(1-a2)k+1]=0 (k≠1)
∴k2+(1-a2)k+1=0 10分
∴△=(1-a2)2-4≥0,解得a≥
若△=0,則a=,此時(shí)k2+[1-()2]k+1=0
k1=k2=1與k≠1矛盾,故a>. 12分
22.解:(1)由已知有f′(x)=2n
令f′(x)=0
得x=± 2分
∵x∈[0,+∞],∴x=
∵0<x<時(shí)f′(x)<0
X>時(shí)f′(x)>0
∴當(dāng)x=時(shí),fmin(x)=an=2n
= 5分
(2)由已知Tn=cos
= 7分
∵ 9分
∴π>
又y=cosx在(0,π)上是減函數(shù)
∴Tn是遞增的
∴Tn<Tn+1(n∈N*) 10分
(3)不存在
由已知點(diǎn)列An(2n,),顯然滿足y2=x2-1,(x=2n) 12分
即An上的點(diǎn)在雙曲線x2-y2=1上,且在第一象限內(nèi)
∴任意三點(diǎn)An、Am、Ap連線的斜率KAnAm,KAnAp,KAmAp均為正值。
∴任意兩個(gè)量的乘積不可能等于-1
∴三角形AnAmAp三個(gè)內(nèi)角均無直角
∴不可能組成直角三角形。 14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com