13.如圖27所示.長木板的端固定一擋板.木板連同擋板的質(zhì)量.間距離.木板位于光滑水平面上.在木板端有一小物塊.其質(zhì)量小物塊與木板間的動摩擦因數(shù).他們都處于靜止?fàn)顟B(tài).現(xiàn)令小物塊以初速度沿木板向前滑動.直到和擋板相碰.碰撞后.小物塊恰好回到 圖27端而不脫離木板.求碰撞過程中損失的機(jī)械能. 查看更多

 

題目列表(包括答案和解析)

(2011?海淀區(qū)一模)(1)“探究動能定理”的實(shí)驗(yàn)裝置如圖所示,當(dāng)小車在兩條橡皮筋作用下彈出時,橡皮筋對小車做的功記為W0.當(dāng)用4條、6條、8條…完全相同的橡皮筋并在一起進(jìn)行第2次、第3次、第4次…實(shí)驗(yàn)時,橡皮筋對小車做的功記為2W0、3W0、4W0…,每次實(shí)驗(yàn)中由靜止彈出的小車獲得的最大速度可由打點(diǎn)計(jì)時器所打的紙帶測出.關(guān)于該實(shí)驗(yàn),下列說法正確的是
AC
AC

    A.某同學(xué)在一次實(shí)驗(yàn)中,得到一條記錄紙帶.紙帶上打出的點(diǎn),兩端密、中間疏.出現(xiàn)這種情況的原因,可能是沒有使木板傾斜或傾角太小.
    B.當(dāng)小車速度達(dá)到最大時,橡皮筋處于伸長狀態(tài),小車在兩個鐵釘?shù)倪B線處
    C.應(yīng)選擇紙帶上點(diǎn)距均勻的一段計(jì)算小車的最大速度
    D.應(yīng)選擇紙帶上第一點(diǎn)到最后一點(diǎn)的一段計(jì)算小車的最大速度.
(2)某興趣小組在做“探究做功和物體速度變化關(guān)系”的實(shí)驗(yàn)前,提出了以下幾種猜想:①W∝v,②W∝v2,③W∝
v
.他們的實(shí)驗(yàn)裝置如圖甲所示,PQ為一塊傾斜放置的木板,在Q處固定一個速度傳感器(用來測量物體每次通過Q點(diǎn)的速度).在剛開始實(shí)驗(yàn)時,有位同學(xué)提出,不需要測出物體質(zhì)量,只要測出物體初始位置到速度傳感器的距離和讀出速度傳感器的讀數(shù)就行了,大家經(jīng)過討論采納了該同學(xué)的建議.

①請你簡要說明為什么不需要測出物體的質(zhì)量?
②讓小球分別從不同高度無初速釋放,測出物體初始位置到速度傳感器的距離L1、L2、L3、L4…,讀出小球每次通過Q點(diǎn)的速度v1、v2、v3、v4、…,并繪制了如圖乙所示的L-v圖象.若為了更直觀地看出L和v的變化關(guān)系,他們下一步應(yīng)怎么做?
(3)某同學(xué)要測量一均勻新材料制成的圓柱體的電阻率ρ.步驟如下:
①用游標(biāo)為20分度的卡尺測量其長度如圖,由圖可知其長度為
50.15
50.15
mm;
②用螺旋測微器測量其直徑如右上圖,由圖可知其直徑為
4.700
4.700
mm;
③用多用電表的電阻“×10”擋,按正確的操作步驟測此圓柱體的電阻,表盤的示數(shù)如圖,則該電阻的阻值約為
220
220
Ω.
④該同學(xué)想用伏安法更精確地測量其電阻R,現(xiàn)有的器材及其代號和規(guī)格如下:
待測圓柱體電阻R
電流表A1(量程0~4mA,內(nèi)阻約50Ω)
電流表A2(量程0~10mA,內(nèi)阻約30Ω)
電壓表V1(量程0~3V,內(nèi)阻約10kΩ)
電壓表V2(量程0~15V,內(nèi)阻約25kΩ)
直流電源E(電動勢4V,內(nèi)阻不計(jì))
滑動變阻器R1(阻值范圍0~15Ω,允許通過的最大電流2.0A)
滑動變阻器R2(阻值范圍0~2kΩ,允許通過的最大電流0.5A)
開關(guān)S
導(dǎo)線若干
為使實(shí)驗(yàn)誤差較小,要求測得多組數(shù)據(jù)進(jìn)行分析,請?jiān)谟铱蛑挟嫵鰷y量的電路圖,并標(biāo)明所用器材的代號.
⑤若該同學(xué)用伏安法跟用多用電表測量得到的R測量值幾乎相等,由此可估算此圓柱體材料的電阻率約為ρ=
7.6×10-2
7.6×10-2
Ω?m.(保留2位有效數(shù)字)

查看答案和解析>>

                                   高考真題

1.【解析】設(shè)物體的質(zhì)量為m,t0時刻受盒子碰撞獲得速度v,根據(jù)動量守恒定律                

3t0時刻物體與盒子右壁碰撞使盒子速度又變?yōu)関0,說明碰撞是彈性碰撞            聯(lián)立以上兩式解得  m=M                      

(也可通過圖象分析得出v0=v,結(jié)合動量守恒,得出正確結(jié)果)

【答案】m=M

2.【解析】由動量守恒定律和能量守恒定律得:      

          解得:

      炮彈射出后做平拋,有:

      解得目標(biāo)A距炮口的水平距離為:

     同理,目標(biāo)B距炮口的水平距離為:

                     

              解得:

【答案】

3.【解析】(1)P1滑到最低點(diǎn)速度為,由機(jī)械能守恒定律有:  

    解得:

P1、P2碰撞,滿足動量守恒,機(jī)械能守恒定律,設(shè)碰后速度分別為、

      

解得:    =5m/s

P2向右滑動時,假設(shè)P1保持不動,對P2有:(向左)

對P1、M有: 

此時對P1有:,所以假設(shè)成立。

(2)P2滑到C點(diǎn)速度為,由   得

P1、P2碰撞到P2滑到C點(diǎn)時,設(shè)P1、M速度為v,對動量守恒定律:

     解得:

對P1、P2、M為系統(tǒng):

代入數(shù)值得:

滑板碰后,P1向右滑行距離:

P2向左滑行距離:

所以P1、P2靜止后距離:

【答案】(1)(2)

 

4.【解析】(1)P1經(jīng)t1時間與P2碰撞,則     

P1、P2碰撞,設(shè)碰后P2速度為v2,由動量守恒:

解得(水平向左)    (水平向右)

碰撞后小球P1向左運(yùn)動的最大距離:      又:

解得:

所需時間:

(2)設(shè)P1、P2碰撞后又經(jīng)時間在OB區(qū)間內(nèi)再次發(fā)生碰撞,且P1受電場力不變,由運(yùn)動學(xué)公式,以水平向右為正:   則: 

解得:  (故P1受電場力不變)

對P2分析:  

所以假設(shè)成立,兩球能在OB區(qū)間內(nèi)再次發(fā)生碰撞。

5.【解析】從兩小球碰撞后到它們再次相遇,小球A和B的速度大小保持不變。根據(jù)它們通過的路程,可知小球B和小球A在碰撞后的速度大小之比為4┱1。

設(shè)碰撞后小球A和B 的速度分別為,在碰撞過程中動量守恒,碰撞前后動能相等,有

                     ………… ①

               ………… ②

聯(lián)立以上兩式再由,可解出 m1∶m2=2∶1

【答案】2∶1

6.【解析】⑴碰后B上擺過程機(jī)械能守恒,可得。

⑵兩球發(fā)生彈性碰撞過程系統(tǒng)動量守恒,機(jī)械能守恒。設(shè)與B碰前瞬間A的速度是v0,有2mv0=2mvA+mvB,,可得vA= v0/3,vB= 4v0/3,因此,同時也得到

⑶先由A平拋的初速度vA和水平位移L/2,求得下落高度恰好是L。即兩球碰撞點(diǎn)到水平面的高度是L。A離開彈簧時的初動能可以認(rèn)為就等于彈性力對A做的功。A離開彈簧上升的全過程用機(jī)械能守恒:,解得W=

【答案】(1)   (2)W=                  

7.【解析】此題是單個質(zhì)點(diǎn)碰撞的多過程問題,既可以用動能定理與動量定理求解,也可以用力與運(yùn)動關(guān)系與動量求解.設(shè)小物塊從高為h處由靜止開始沿斜面向下運(yùn)動,到達(dá)斜面底端時速度為v。                                  

由動能定理得          ①

以沿斜面向上為動量的正方向。按動量定理,碰撞過程中擋板給小物塊的沖量

②                                         

設(shè)碰撞后小物塊所能達(dá)到的最大高度為h’,則 ③                             

同理,有   ⑤                                     

式中,v’為小物塊再次到達(dá)斜面底端時的速度,I’為再次碰撞過程中擋板給小物塊的沖量。由①②③④⑤式得       ⑥式中   ⑦                                         

由此可知,小物塊前4次與擋板碰撞所獲得的沖量成等比級數(shù),首項(xiàng)為

  ⑧總沖量為

   由  ( ⑩得

      代入數(shù)據(jù)得     N?s     

【答案】  N?s

8.【解析】此題開始的繩連的系統(tǒng),后粘合變成了小球單個質(zhì)點(diǎn)的運(yùn)動問題(1)對系統(tǒng),設(shè)小球在最低點(diǎn)時速度大小為v1,此時滑塊的速度大小為v2,滑塊與擋板接觸前由系統(tǒng)的機(jī)械能守恒定律:mgl = mv12 +mv22

由系統(tǒng)的水平方向動量守恒定律:mv1 = mv2

對滑塊與擋板接觸到速度剛好變?yōu)榱愕倪^程中,擋板阻力對滑塊的沖量為:I = mv2

聯(lián)立①②③解得I = m 方向向左④

(2)小球釋放到第一次到達(dá)最低點(diǎn)的過程中,設(shè)繩的拉力對小球做功的大小為W,對小球由動能定理:mgl+W = mv12

聯(lián)立①②⑤解得:W =-mgl,即繩的拉力對小球做負(fù)功,大小為mgl 。

【答案】(1)I = m 方向向左;(2)mgl

9.【解析】(1)設(shè)B在繩被拉斷后瞬間的速度為,到達(dá)C點(diǎn)時的速度為,有

   (1)    (2)

代入數(shù)據(jù)得         (3)

(2)設(shè)彈簧恢復(fù)到自然長度時B的速度為,取水平向右為正方向,有

    (4)      (5)

代入數(shù)據(jù)得     其大小為4NS  (6)

(3)設(shè)繩斷后A的速度為,取水平向右為正方向,有

 (7)   代入數(shù)據(jù)得

【答案】(1)  (2)4NS    。ǎ常

10.【解析】設(shè)擺球A、B的質(zhì)量分別為、,擺長為l,B球的初始高度為h1,碰撞前B球的速度為vB.在不考慮擺線質(zhì)量的情況下,根據(jù)題意及機(jī)械能守恒定律得

                                                  ①

                                                    ②

設(shè)碰撞前、后兩擺球的總動量的大小分別為P1、P2。有

P1=mBv                                                            ③

聯(lián)立①②③式得

                                           ④

同理可得

                                     ⑤

聯(lián)立④⑤式得                                        

代入已知條件得         由此可以推出≤4%                                                      

所以,此實(shí)驗(yàn)在規(guī)定的范圍內(nèi)驗(yàn)證了動量守恒定律。

【答案】≤4%  

名校試題

1.【解析】(1)M靜止時,設(shè)彈簧壓縮量為l0,則Mg=kl0     

速度最大時,M、m組成的系統(tǒng)加速度為零,則

(M+m)g-k(l0+l1)=0     ②-

聯(lián)立①②解得:k=50N/m   ③                                     

[或:因M初位置和速度最大時都是平衡狀態(tài),故mg=kl1,解得:k=50N/m]

(2)m下落h過程中,mgh=mv02     ④-

m沖擊M過程中, m v0=(M+m)v       ⑤-

所求過程的彈性勢能的增加量:ΔE=(M+m)g(l1+l2)+ (M+m)v2

聯(lián)立④⑤⑥解得:ΔE=0.66J   ⑦

(用彈性勢能公式計(jì)算的結(jié)果為ΔE=0.65J也算正確)

【答案】ΔE=0.66J

2.【解析】①根據(jù)圖象可知,物體C與物體A相碰前的速度為:v1=6m/s

       相碰后的速度為:v2=2m/s   根據(jù)定量守恒定律得:

       解得:m3=2.0kg

       ②規(guī)定向左的方向?yàn)檎较颍诘?.0s和第15s末物塊A的速度分別為:

       v2=2m/s,v3=-2m/s 所以物塊A的動量變化為:

       即在5.0s到15s的時間內(nèi)物塊A動量變化的大小為:16kg?m/s 方向向右

【答案】(1)m3=2.0kg   (2)16kg?m/s 方向向右

3.【解析】(1)設(shè)第一顆子彈進(jìn)入靶盒A后,子彈與靶盒的共內(nèi)速度為。

  根據(jù)碰撞過程系統(tǒng)動量守恒,有:  

  設(shè)A離開O點(diǎn)的最大距離為,由動能定理有: 

  解得:  

(2)根據(jù)題意,A在的恒力F的作用返回O點(diǎn)時第二顆子彈正好打入,由于A的動量與第二顆子彈動量大小相同,方向相反,故第二顆子彈打入后,A將靜止在O點(diǎn)。設(shè)第三顆子彈打入A后,它們的共同速度為,由系統(tǒng)動量守恒得:。2分)

  設(shè)A從離開O點(diǎn)到又回到O點(diǎn)所經(jīng)歷的時間為t,取碰后A運(yùn)動的方向?yàn)檎较,由動量定理得?sub> 解得:   

(3)從第(2)問的計(jì)算可以看出,第1、3、5、……(2n+1)顆子彈打入A后,A運(yùn)動時間均為 故總時間  

【答案】(1)  (2)   (3)

4.【解析】對A、B、C整體,從C以v0滑上木塊到最終B、C達(dá)到共同速度V,

其動量守恒既:m v0=2mV1+3mv     1.8=2V1+3×0.4        V1=0.3m/s          

對A、B、C整體,從C以v0滑上木塊到C以V2剛離開長木板,

此時A、B具有共同的速度V1。其動量守恒即:m v0=mV2+4mv1      

1.8=V2+4×0.3         V2=0.6m/s  

 【答案】 (1)V1=0.3m/s  (2)  V2=0.6m/s    

5.【解析】(1)B與A碰撞前速度由動能定理   

 得         

      B與A碰撞,由動量守恒定律        

      得               

      碰后到物塊A、B運(yùn)動至速度減為零,彈簧的最大彈性勢能

                     

(2)設(shè)撤去F后,A、B一起回到O點(diǎn)時的速度為,由機(jī)械能守恒得

                             

   返回至O點(diǎn)時,A、B開始分離,B在滑動摩擦力作用下向左作勻減速直線運(yùn)動,設(shè)物塊B最終離O點(diǎn)最大距離為x

 由動能定理得:                       

 【答案】(1)  (2)

6.【解析】設(shè)小車初速度為V0,A與車相互作用摩擦力為f,      

第一次碰后A與小車相對靜止時速為  V1,由動量守恒,

得 mAV0-mBV0=(mA+mB)V1

   由能量守恒,得mAV02mBV02=f?L+(mA+mB)V12…        圖14

    多次碰撞后,A停在車右端,系統(tǒng)初動能全部轉(zhuǎn)化為內(nèi)能,由能量守恒,得

    fL=(mA+mB)V02

    聯(lián)系以上三式,解得:(mA+mB)2=4(mA-mB)2  ∴mA=3mB

【答案】mA=3mB

 

 

7.【解析】(1)當(dāng)B離開墻壁時,A的速度為v0,由機(jī)械能守恒有

            mv02=E                         解得 v0=    

(2)以后運(yùn)動中,當(dāng)彈簧彈性勢能最大時,彈簧達(dá)到最大程度時,A、B速度相等,設(shè)為v,由動量守恒有  2mv=mv0        解得               v=  

(3)根據(jù)機(jī)械能守恒,最大彈性勢能為

             Ep=mv022mv2=E        

【答案】(1)v0=  (2)v=    (3)Ep=E

8.【解析】設(shè)子彈的質(zhì)量為m,木塊的質(zhì)量為M,子彈射出槍口時的速度為v0。

第一顆子彈射入木塊時,動量守恒 

木塊帶著子彈做平拋運(yùn)動   

第二顆子彈射入木塊時,動量守恒 

木塊帶著兩顆子彈做平拋運(yùn)動   

聯(lián)立以上各式解得   

【答案】

9.【解析】

  • <dd id="em8uu"><td id="em8uu"></td></dd>

    車與緩沖器短時相撞過程根據(jù)動量守恒:           ②         2分

    O到D過程               ③      

    由①②③求得:                                   

    (2)D到O過程                ④       

    賽車從O點(diǎn)到停止運(yùn)動              ⑤        

    車整個過程克服摩擦力做功        ⑥      

    由④⑤⑥求得:    

    【答案】(1)      (2)  

    10.【解析】(1)設(shè)所有物塊都相對木板靜止時的速度為 v,因木板與所有物塊系統(tǒng)水平方向不受外力,動量守恒,應(yīng)有:

    m v+m?2 v+m?3 v+…+m?n v=(M + nm)v      1

                  M = nm,                              2

    解得:          v=(n+1)v,                                        6分

        (2)設(shè)第1號物塊相對木板靜止時的速度為v,取木板與物塊1為系統(tǒng)一部分,第2 號物塊到第n號物塊為系統(tǒng)另一部分,則

          木板和物塊1    △p =(M + m)v- m v,

          2至n號物塊    △p=(n-1)m?(v- v

    由動量守恒定律: △p=△p,

    解得            v= v,                    3                 6分

    (3)設(shè)第k號物塊相對木板靜止時的速度由v ,則第k號物塊速度由k v減為v的過程中,序數(shù)在第k號物塊后面的所有物塊動量都減小m(k v- v),取木板與序號為1至K號以前的各物塊為一部分,則 

    △p=(M+km)v-(m v+m?2 v+…+mk v)=(n+k)m v-(k+1)m v

    序號在第k以后的所有物塊動量減少的總量為

         △p=(n-k)m(k v- v

    由動量守恒得   △p=△p, 即

    (n+k)m v-(k+1)m v= (n-k)m(k v- v),

    解得        v=     

    【答案】

    11.【解析】(1)設(shè)地球質(zhì)量為M0,在地球表面,有一質(zhì)量為m的物體,

        設(shè)空間站質(zhì)量為m′繞地球作勻速圓周運(yùn)動時,

        聯(lián)立解得,

      (2)因?yàn)樘綔y器對噴射氣體做功的功率恒為P,而單位時間內(nèi)噴氣質(zhì)量為m,故在t時

        間內(nèi),據(jù)動能定理可求得噴出氣體的速度為:

        另一方面探測器噴氣過程中系統(tǒng)動量守恒,則:

    &n


    同步練習(xí)冊答案
    <code id="em8uu"><kbd id="em8uu"></kbd></code>
    <cite id="em8uu"></cite>
      <strong id="em8uu"><center id="em8uu"></center></strong>