11.已知兩點M.若直線上存在點P使|PM|―|PN|=6.則稱該直線為“B型直線 .給出下列直線:①,②,③,④其中為“B型直線 的是 . 查看更多

 

題目列表(包括答案和解析)

已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”,給出下列直線:①y=x+1;②y=
43
x
;③y=2;④y=2x+1.其中為“B型直線”的是
 
.(填上所有正確結(jié)論的序號)

查看答案和解析>>

已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”,給出下列直線是“B型直線”的是( 。
A、y=x+1
B、y=
4
3
x
C、y=-
4
3
x
D、y=2x+1

查看答案和解析>>

已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”給出下列直線①y=x+1;②y=2;③y=
4
3
x;④y=2x+1;其中為“B型直線”的是(  )
A、①③B、①②C、③④D、①④

查看答案和解析>>

已知兩個點M(-3,0)和N(3,0),若直線上存在點P,使|PM|+|PN|=10,則稱該直線為“A型直線”,則下列直線
①x=6②y=-5③y=x④y=2x+1中為“A型直線”的是
③④
③④
 (填上所有正確結(jié)論的序號)

查看答案和解析>>

已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”,給出下列直線:①y=x+1,②y=x, ③y=2,④y=2x+1,其中為“B型直線”的是         .(填上所有正確結(jié)論的序號)

 

查看答案和解析>>

一、填空題:中國數(shù)學(xué)論壇網(wǎng) http://www.mathbbs.cn 2008年03月18日正在開通

1.2   2.4   3.3   4.   5.12   6.―2   7.   8.   9.18

<td id="xsi5s"></td>
  • 2,4,6

    二、選擇題:

    13.C   14.D   15.A   16.B

    三、解答題:

    17.解:設(shè)的定義域為D,值域為A

        由                                                         …………2分

                            …………4分

        又                                                    …………6分

                                                              …………8分

        的定義域D不是值域A的子集

        不屬于集合M                                                             …………12分

    18.解:(1)VC―PAB=VP―ABC

                                          …………5分

       (2)取AB中點D,連結(jié)CD、PD

        ∵△ABC是正三角形 ∴CD⊥AB

    PA⊥底面ABC,∴CD⊥AP,∴CD⊥平面PAB

    ∠CPD是PC與平面PAB所成的角                                          …………8分

                                                             …………11分

    ∴PC與平面PAB所成角的大小為                          …………12分

    19.解:(1)                                             …………2分

                                 …………4分

                   …………6分

       (2)設(shè)                                        …………8分

      …………10分

    (m2)      …………12分

    答:當(dāng)(m2)   …………14分

    20.解:(1)=3

                                                                    …………2分

    設(shè)圓心到直線l的距離為d,則

    即直線l與圓C相離                                                   …………6分

       (2)由  …………8分

    由條件可知,                                        …………10分

    又∵向量的夾角的取值范圍是[0,π]

                                                               …………12分

                                                           …………14分

    21.解:(1)                       …………2分

                    …………4分

       (2)由

                                …………6分

                                                                                  …………9分

       是等差數(shù)列                                                        …………10分

       (3)

       

                             …………13分

                       …………16分

    22.解:(1)∵直線L過橢圓C右焦點F

                                                       …………2分

        即

        ∴橢圓C方程為                                                  …………4分

       (2)記上任一點

       

        記P到直線G距離為d

        則                                                   …………6分

       

                                                                 …………10分

       (3)直線L與y軸交于、    …………12分

        由

                                                                            …………14分

        又由

             同理                                                        …………16分

       

                                                                            …………18分

     

     


    同步練習(xí)冊答案