查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過定點P,則點P的坐標為
(2,2)

查看答案和解析>>

CBACA;DCADC;DB

30;9,27;1;

17. 解:易得                                            ………… 3分

當(dāng)a=1時, B=,滿足;                           ………… 5分

當(dāng)時,B={x|2a<x<a2+1},要使即BA,

必須,解之得                               ………… 8分

綜上可知,存在這樣的實數(shù)a滿足題設(shè)成立.       ………… 10分

18. 解: (1) 圖2是由四塊圖1所示地磚繞點按順時針旋轉(zhuǎn)后得到,△為等腰直角三角形,     四邊形是正方形.                                  …… 4分

(2) 設(shè),則,每塊地磚的費用為,制成△、△和四邊形三種材料的每平方米價格依次為3a、2aa (元),                          …… 6分

       

                                                

    .                                …… 10分

    由,當(dāng)時,有最小值,即總費用為最省. 

    答:當(dāng)米時,總費用最省.                             …… 12分

 

19. 解:(Ⅰ)易得,的解集為恒成立.解得.………………… 3分

因此的對稱軸, 故函數(shù)在區(qū)間上不單調(diào),從而不存在反函數(shù)。                                                ……………………… 5分

(Ⅱ)由已知可得,則

,

.                          ………………………7分

①     若,則上單調(diào)遞增,在上無極值;

②     若,則當(dāng)時,;當(dāng)時,.

當(dāng)時,有極小值在區(qū)間上存在極小值,.

③     若,則當(dāng)時,;當(dāng)時,.

*當(dāng)時,有極小值.

在區(qū)間上存在極小值 .……………… 10分

綜上所述:當(dāng)時,在區(qū)間上存在極小值! 12分

20. 解:(Ⅰ)當(dāng)時,

,即數(shù)列的通項公式為       …… 4分

 (Ⅱ)當(dāng)時,

當(dāng)               

                                …… 8分

由此可知,數(shù)列的前n項和                  …… 12分

21. 解:(Ⅰ).                          …… 4分

(Ⅱ)易得的值域為A=,設(shè)函數(shù)的值域B,若對于任意總存在,使得成立,只需。               …… 6分

顯然當(dāng)時,,不合題意;

當(dāng)時,,故應(yīng)有,解之得: ;…… 8分

當(dāng)時,,故應(yīng)有,解之得:! 10分

綜上所述,實數(shù)的取值范圍為。               …… 12分

22. 解:(Ⅰ).

                                                                …… 3分

  (Ⅱ) …… 6分

  ,

 由錯位相減法得:

    

所以:。   …… 8分

  (Ⅲ)

為遞增數(shù)列 。

 中最小項為     …… 12分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊答案