.當(dāng)時(shí).給出下列不等式:①, 查看更多

 

題目列表(包括答案和解析)

給出下列四個(gè)判斷:
①定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí)f(x)=x2+2,則函數(shù)f(x)的值域?yàn)閧y|y≥2或y≤-2};
②若不等式x3+x2+a<0對(duì)一切x∈[0,2]恒成立,則實(shí)數(shù)a的取值范圍是{a|a<-12};
③當(dāng)f(x)=log3x時(shí),對(duì)于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
;
④設(shè)g(x)表示不超過(guò)t>0的最大整數(shù),如:[2]=2,[1.25]=1,對(duì)于給定的n∈N+,定義
C
x
n
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),則當(dāng)x∈[
3
2
,2)時(shí)函數(shù)
C
x
8
的值域是(4,
16
3
]
;
上述判斷中正確的結(jié)論的序號(hào)是
②④
②④

查看答案和解析>>

給出下列四個(gè)命題:
①命題p:?x∈R,sin≤1,則¬p:?x∈R,sinx<1,
②當(dāng)a≥1時(shí),不等式|x-4|+|x-3|<a的解集為非空;
③當(dāng)x>1時(shí),有l(wèi)nx+
1
lnx
≥2
④設(shè)有五個(gè)函數(shù).y=x,y=x
1
2
,y=x3,y=x2,y=2x
,其中既是偶函數(shù)又在(0,+∞) 上是增函數(shù)的有2個(gè).
其中真命題的序號(hào)是

查看答案和解析>>

給出下列四個(gè)命題:
①命題p:?x∈R,sinx≤1,則¬p:?x∈R,sinx<1;
②當(dāng)a≥1時(shí),不等式|x-4|+|x-3|<a的解集為非空;
③當(dāng)x>1時(shí),有1nx+
1
1nx
≥2
;
④設(shè)有五個(gè)函數(shù)y=x-1,y=x
1
2
,y=x3,y=x2,y=2|x|
,其中既是偶函數(shù)又在(0,+∞)上是增函數(shù)的有2個(gè).
其中真命題的序號(hào)是
③④
③④

查看答案和解析>>

給出下列命題:

①若函數(shù)y=(-1≤x≤a)的反函數(shù)是它本身,則a=0;

②當(dāng)a>1時(shí),函數(shù)f(x)=ax+loga(x十1)在[0,1]上的最大值與最小值之和不可能為a;

③設(shè)f(x)是定義在R上的連續(xù)函數(shù),若不等式f(x)<0的解集為(1,2),則不等式f(x—1)<0的解集為(2,3).

填出你認(rèn)為正確的所有命題序號(hào)_____________.

查看答案和解析>>

給出下列命題:

①若函數(shù)y=(-1≤x≤a)的反函數(shù)是它本身,則a=0;

②當(dāng)a>1時(shí),函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值與最小值之和不可能為a;

③設(shè)f(x)是定義在R上的連續(xù)函數(shù),若不等式f(x)<0的解集為(1,2),則不等式f(x-1)<0的解集為(2,3).

填出你認(rèn)為正確的所有命題序號(hào)_________.

查看答案和解析>>

CBACA;DCADC;DB

30;9,27;1;

17. 解:易得                                            ………… 3分

當(dāng)a=1時(shí), B=,滿足;                           ………… 5分

當(dāng)時(shí),B={x|2a<x<a2+1},要使即BA,

必須,解之得                               ………… 8分

綜上可知,存在這樣的實(shí)數(shù)a滿足題設(shè)成立.       ………… 10分

18. 解: (1) 圖2是由四塊圖1所示地磚繞點(diǎn)按順時(shí)針旋轉(zhuǎn)后得到,△為等腰直角三角形,     四邊形是正方形.                                  …… 4分

(2) 設(shè),則,每塊地磚的費(fèi)用為,制成△、△和四邊形三種材料的每平方米價(jià)格依次為3a、2a、a (元),                          …… 6分

       

                                                

    .                                …… 10分

    由,當(dāng)時(shí),有最小值,即總費(fèi)用為最省. 

    答:當(dāng)米時(shí),總費(fèi)用最省.                             …… 12分

 

19. 解:(Ⅰ)易得,的解集為,恒成立.解得.………………… 3分

因此的對(duì)稱軸, 故函數(shù)在區(qū)間上不單調(diào),從而不存在反函數(shù)。                                                ……………………… 5分

(Ⅱ)由已知可得,則

,

.                          ………………………7分

①     若,則上單調(diào)遞增,在上無(wú)極值;

②     若,則當(dāng)時(shí),;當(dāng)時(shí),.

當(dāng)時(shí),有極小值在區(qū)間上存在極小值,.

③     若,則當(dāng)時(shí),;當(dāng)時(shí),.

*當(dāng)時(shí),有極小值.

在區(qū)間上存在極小值 .……………… 10分

綜上所述:當(dāng)時(shí),在區(qū)間上存在極小值! 12分

20. 解:(Ⅰ)當(dāng)時(shí),

,即數(shù)列的通項(xiàng)公式為       …… 4分

 (Ⅱ)當(dāng)時(shí),

當(dāng)               

                                …… 8分

由此可知,數(shù)列的前n項(xiàng)和                  …… 12分

21. 解:(Ⅰ).                          …… 4分

(Ⅱ)易得的值域?yàn)锳=,設(shè)函數(shù)的值域B,若對(duì)于任意總存在,使得成立,只需。               …… 6分

顯然當(dāng)時(shí),,不合題意;

當(dāng)時(shí),,故應(yīng)有,解之得: ;…… 8分

當(dāng)時(shí),,故應(yīng)有,解之得:! 10分

綜上所述,實(shí)數(shù)的取值范圍為。               …… 12分

22. 解:(Ⅰ).

                                                                …… 3分

  (Ⅱ) …… 6分

  ,

 由錯(cuò)位相減法得:,

    

所以:。   …… 8分

  (Ⅲ)

為遞增數(shù)列 。

 中最小項(xiàng)為     …… 12分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案