某人定制了一批地磚. 每塊地磚 是邊長為米的正方形.點E.F分別在邊BC和CD上. △.△和四邊形均由單一材料制成.制成△.△和四邊形的三種材料的每平方米價格之比依次為3:2:1. 若將此種地磚按圖2所示的形式鋪設.能使中間的深色陰影部分成四邊形. 查看更多

 

題目列表(包括答案和解析)

某人定制了一批地磚. 每塊地磚 (如圖1所示)是邊長為米的正方形,點E、F分別在邊BCCD上, △、△和四邊形均由單一材料制成,制成△、△和四邊形的三種材料的每平方米價格之比依次為3:2:1. 若將此種地磚按圖2所示的形式鋪設,能使中間的深色陰影部分成四邊形.

 (1) 求證:四邊形是正方形;

(2) 在什么位置時,定制這批地磚所需的材料費用最省?

查看答案和解析>>

19.某人定制了一批地磚.每塊地磚(如圖1所示)是邊長為米的正方形,點EF分別在邊BCCD上,△、△和四邊形均由單一材料制成,制成△、△和四邊形的三種材料的每平方米價格之比依次為3:2:1.若將此種地磚按圖2所示的形式鋪設,能使中間的深色陰影部分成四邊形.

      

       圖1                         圖2

(1) 求證:四邊形是正方形;

(2) 在什么位置時,定制這批地磚所需的材料費用最?

查看答案和解析>>

某人定制了一批地磚. 每塊地磚 (如圖1所示)是邊長為米的正方形,點EF分別在邊BCCD上, △、△和四邊形均由單一材料制成,制成△、△和四邊形的三種材料的每平方米價格之比依次為3:2:1. 若將此種地磚按圖2所示的形式鋪設,能使中間的深色陰影部分成四邊形.


(1) 求證:四邊形是正方形;
(2) 在什么位置時,定制這批地磚所需的材料費用最。

查看答案和解析>>

某人定制了一批地磚.每塊地磚〔如圖(1)所示〕是邊長為0.4米的正方形ABCD,點E、F分別在邊BC和CD上,△CFE、△ABE和四邊形AEFD均由單一材料制成,制成△CFE、△ABE和四邊形AEFD的三種材料的每平方米價格之比依次為3∶2∶1.若將此種地磚按圖(2)所示的形式鋪設,能使中間的深色陰影部分成四邊形EFGH.

(1)求證:四邊形EFGH是正方形.

(2)E、F在什么位置時,定制這批地磚所需的材料費用最?

(1)

(2)

查看答案和解析>>

某人定制了一批地磚.每塊地磚(如圖1所示)是邊長為0.4米的正方形ABCD,點E、F分別在邊BC和CD上,且CE=CF,△CFE、△ABE和四邊形AEFD均由單一材料制成,制成△CFE、△ABE和四邊形AEFD的三種材料的每平方米價格之比依次為3:2:1.若將此種地磚按圖2所示的形式鋪設,能使中間的深色陰影部分成四邊形EFGH.問E、F在什么位置時,定制這批地磚所需的材料費用最?

查看答案和解析>>

CBACA;DCADC;DB

30;9,27;1;

17. 解:易得                                            ………… 3分

當a=1時, B=,滿足;                           ………… 5分

時,B={x|2a<x<a2+1},要使即BA,

必須,解之得                               ………… 8分

綜上可知,存在這樣的實數(shù)a滿足題設成立.       ………… 10分

18. 解: (1) 圖2是由四塊圖1所示地磚繞點按順時針旋轉后得到,△為等腰直角三角形,     四邊形是正方形.                                  …… 4分

(2) 設,則,每塊地磚的費用為,制成△、△和四邊形三種材料的每平方米價格依次為3a、2aa (元),                          …… 6分

       

                                                

    .                                …… 10分

    由,當時,有最小值,即總費用為最省. 

    答:當米時,總費用最省.                             …… 12分

 

19. 解:(Ⅰ)易得的解集為,恒成立.解得.………………… 3分

因此的對稱軸, 故函數(shù)在區(qū)間上不單調(diào),從而不存在反函數(shù)。                                                ……………………… 5分

(Ⅱ)由已知可得,則

,

.                          ………………………7分

①     若,則上單調(diào)遞增,在上無極值;

②     若,則當時,;當時,.

時,有極小值在區(qū)間上存在極小值,.

③     若,則當時,;當時,.

*時,有極小值.

在區(qū)間上存在極小值 .……………… 10分

綜上所述:當時,在區(qū)間上存在極小值! 12分

20. 解:(Ⅰ)當時,

,即數(shù)列的通項公式為       …… 4分

 (Ⅱ)當時,

               

                                …… 8分

由此可知,數(shù)列的前n項和                  …… 12分

21. 解:(Ⅰ).                          …… 4分

(Ⅱ)易得的值域為A=,設函數(shù)的值域B,若對于任意總存在,使得成立,只需。               …… 6分

顯然當時,,不合題意;

時,,故應有,解之得: ;…… 8分

時,,故應有,解之得:! 10分

綜上所述,實數(shù)的取值范圍為。               …… 12分

22. 解:(Ⅰ).

                                                                …… 3分

  (Ⅱ) …… 6分

  ,

 由錯位相減法得:,

    

所以:。   …… 8分

  (Ⅲ)

為遞增數(shù)列 。

 中最小項為     …… 12分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習冊答案