方法1:((Ⅰ)證明:∵點A在平面BCD上的射影落在DC上.即平面ACD經(jīng)過平面BCD的垂線.∴平面ADC⊥平面BCD. -----------------------2分(Ⅱ)∵DA⊥平面ABC. ∴平面ADB⊥平面ABC.過C做CH⊥AB于H.∴CH⊥平面ADB.所以CH為所求.且CH=即點C到平面ABD的距離為. -----------------7分(Ⅲ)解:取中點.連為中點由(Ⅱ)中結論可知DA⊥平面ABC.∴EF⊥平面ABC.過F作FG⊥AC.垂足為G.連結EG.則GF為EG在平面ABC的射影.∴∠EGF是所求二面角的平面角. 在△ABC中FG=BC=, 又EFAD.∴EF=在△EFG中容易求出∠EGF=45°.即二面角B-AC-E的大小是45°. . ----------------12分 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人),現(xiàn)用分層抽樣方法(按A類、B類分二層)從該工廠的工人中共抽查100名工人,調查他們的生產能力(此處生產能力指一天加工的零件數(shù))。

(I)求甲、乙兩工人都被抽到的概率,其中甲為A類工人,乙為B類工人;        

(II)從A類工人中的抽查結果和從B類工人中的抽插結果分別如下表1和表2.

表1:

生產能力分組

人數(shù)

4

8

5

3

表2:

生產能力分組

人數(shù)

    6

    y

    36

    18

 

(i)先確定x,y,再在答題紙上完成下列頻率分布直方圖。就生產能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結論)        

(ii)分別估計A類工人和B類工人生產能力的平均數(shù),并估計該工廠工人的生產能力的平均數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)        

 

 

查看答案和解析>>

(本小題滿分12分)

   某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調查他們的生產能力(生產能力指一天加工的零件數(shù)).

(Ⅰ)A類工人中和B類工人各抽查多少工人?

(Ⅱ)從A類工人中抽查結果和從B類工人中的抽查結果分別如下表1和表2

表1:

生產能力分組

人數(shù)

4

8

5

3

表2:

生產能力分組

人數(shù)

    6

    y

    36

    18

(ⅰ)先確定,再在答題紙上完成下列頻率分布直方圖。就生產能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結論)

(ii)分別估計類工人和類工人生產能力的平均數(shù),并估計該工廠工人和生產能力的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)。

查看答案和解析>>

(本小題滿分12分)

某初級中學共有學生2000名,各年級男、女生人數(shù)如下表:

初一年級

初二年級

初三年級

女生

373

x

Y

男生

377

370

z

已知在全校學生中隨機抽取1名,抽到初二年級女生的概率是0.19。   (I)求x的值;  (II)現(xiàn)用分層抽樣的方法在全校抽取48名學生,問應在初三年級抽取多少名? (III)已知,求初三年級中女生比男生多的概率。

查看答案和解析>>

(本小題滿分12分)下表提供了某廠節(jié)能降耗技術改造后生產甲產品過程中記錄的產量x(噸)與相應的生產能耗Y(噸標準煤)的幾組對照數(shù)據(jù)

x

    3

    4

    5

    6

    y

    2.5

    3

    4

    4.5

 (1)請畫出上表數(shù)據(jù)的散點圖; (2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出Y關于x的線性回歸方程Y=bx+a;(3)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(jù)(2)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?

  (參考數(shù)值:32.5+43+54+64.5=66.5)

查看答案和解析>>

(本小題滿分12分)

有編號為,,…的10個零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):


其中直徑在區(qū)間[1.48,1.52]內的零件為一等品。

(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;

(Ⅱ)從一等品零件中,隨機抽取2個.

     (。┯昧慵木幪柫谐鏊锌赡艿某槿〗Y果;

     (ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分

【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,,共有6種.

      所以P(B)=.

(本小題滿分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

查看答案和解析>>


同步練習冊答案