方法2:如圖.以CB所在直線為x軸.DC所在直線為y軸.過點(diǎn)C.平面BDC方向向上的法向量為Z軸建立空間直角坐標(biāo)系. 查看更多

 

題目列表(包括答案和解析)

18、某學(xué)校初中三年級學(xué)生在參加綜合實(shí)踐活動(dòng)中,看到工人師傅在材料的邊角處畫直角時(shí),有時(shí)用“三弧法”,如圖所示,方法是:
(1)畫線段AB,分別以A、B為圓心,AB為半徑畫弧,兩弧交于C點(diǎn);
(2)在AC延長線上截取CD=CB;
(3)連接DB,則得到直角∠ABC,你知道這是為什么嗎?請說明理由.

查看答案和解析>>

如圖,在Rt△ABC中,∠C=90°,AC=12,BC=16,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AC邊向點(diǎn)C以每秒3個(gè)單位長的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)沿CB邊向點(diǎn)B以每秒4個(gè)單位長的速度運(yùn)動(dòng).P,Q分別從點(diǎn)A,C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).在運(yùn)動(dòng)過程中,△PCQ關(guān)于直線PQ對稱的圖形是△PDQ.設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)設(shè)四邊形PCQD的面積為y,求y與t的函數(shù)關(guān)系式及自變量t的取值范圍;
(2)是否存在時(shí)刻t,使得PD∥AB?若存在,求出t的值;若不存在,請說明理由;
(3)通過觀察、畫圖或折紙等方法,猜想是否存在時(shí)刻t,使得PD⊥AB?若存在,請估計(jì)t的值在括號(hào)中的哪個(gè)時(shí)間段內(nèi)(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,請簡要說明理由.
精英家教網(wǎng)

查看答案和解析>>

精英家教網(wǎng)如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點(diǎn)C,使DC=BD,連接AC交⊙O于點(diǎn)F.
(1)AB與AC的大小有什么關(guān)系?為什么?
(2)按角的大小分類,請你判斷△ABC屬于哪一類三角形,并說明理由.

小明按下面的方法作出了∠MON的平分線:
①反向延長射線OM;
②以點(diǎn)O為圓心,任意長為半徑作圓,分別交∠MON的兩邊于點(diǎn)A、B,交射線OM的反向延長精英家教網(wǎng)線于點(diǎn)C;
③連接CB;
④以O(shè)為頂點(diǎn),OA為一邊作∠AOP=∠OCB.
(1)根據(jù)上述作圖,射線OP是∠MON的平分線嗎?并說明理由.
(2)若過點(diǎn)A作⊙O的切線交射線OP于點(diǎn)F,連接AB交OP于點(diǎn)E,當(dāng)∠MON=60°、OF=10時(shí),求AE的長.

查看答案和解析>>

(2013•玄武區(qū)一模)如圖,在△ABC中,∠C=90°,AC=3,AB=5.現(xiàn)有一點(diǎn)D,使得∠CDB=∠CAB,DB=CB.
(1)請用尺規(guī)作圖的方法確定點(diǎn)D的位置(保留作圖痕跡,可簡要說明作法);
(2)連接CD,與AB交于點(diǎn)E,求∠BEC的度數(shù);
(3)以A為圓心AB長為半徑作⊙A,點(diǎn)O在直線BC上運(yùn)動(dòng),且以O(shè)為圓心r為半徑的⊙O與⊙A相切2次以上,請直接寫出r應(yīng)滿足的條件.

查看答案和解析>>

已知Rt△ABC和Rt△DEF按如圖①擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB=∠EDF=90°,∠F=∠B=45°,AC=8cm,CF=10cm.如圖②,△DEF從圖①的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以
3
2
2
cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t≤5).解答下列問題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上(結(jié)果精確到個(gè)位)?
(2)連接PE,四邊形APEC的面積為S,用含有t的數(shù)學(xué)表達(dá)式表示S.當(dāng)t為何值時(shí),S的值為23;
(3)當(dāng)t=
4
4
,面積S最小,S的最小值是
20
20
.(提示:參考配方法)

查看答案和解析>>


同步練習(xí)冊答案