因為.所以.又因為.所以. 查看更多

 

題目列表(包括答案和解析)

如圖,因為AB∥CD,所以∠1=∠2,又因為∠2+∠3=180°,所以∠1+∠3=180°.所用的推理規(guī)則為( 。

查看答案和解析>>

如圖,因為AB∥CD,所以∠1=∠2,又因為∠2=∠3,所以∠1=∠3.所用的推理規(guī)則為

[  ]
A.

假言推理

B.

關(guān)系推理

C.

完全歸納推理

D.

三段論推理

查看答案和解析>>

已知數(shù)列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設(shè) (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結(jié)論。

解:(Ⅰ)當(dāng)時,由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設(shè),

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數(shù)學(xué)歸納法)①當(dāng)時, ,命題成立;

   ②假設(shè)時,命題成立,即,

   則當(dāng)時,

    即

故當(dāng)時,命題成立.

綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

②由于,

所以,

從而.

也即

 

查看答案和解析>>

如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB

(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

 

【解析】本試題主要考查了立體幾何中的運用。

(1)證明:因為SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

故△ADE為等腰三角形.

取ED中點F,連接AF,則AF⊥DE,AF2= AD2-DF2 =

連接FG,則FG∥EC,F(xiàn)G⊥DE.

所以,∠AFG是二面角A-DE-C的平面角.

連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,

cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

所以,二面角A-DE-C的大小為120°

 

查看答案和解析>>

下面是用“三段論”形式寫出的演繹推理:因為指數(shù)函數(shù)y=ax(a>0,a≠1)是減函數(shù)(大提前),又y=2x是指數(shù)函數(shù)(小前提),所以y=2x是減函數(shù)(結(jié)論),其結(jié)論錯誤的原因是( 。

查看答案和解析>>


同步練習(xí)冊答案