19.(理)有一種密碼.明文是由三個(gè)字符組成.密碼是由明文對(duì)應(yīng)的五個(gè)數(shù)字組成.編碼規(guī)則如下表:明文由表中每一排取一個(gè)字符組成.且第一排取的字符在第一位.第二排取的字符放在第二位.第三排取的字符放在第三位.對(duì)應(yīng)的密碼由明放文對(duì)應(yīng)的數(shù)字按相同的次序排成一組.第一排明文字符ABCD密碼字符11121314第二排明文字符EFGH密碼字符21222324第三排明文字符MNPQ密碼字符1234設(shè)隨機(jī)變量表示密碼中不同數(shù)字的個(gè)數(shù)(2)求隨機(jī)變量的分布列和它的數(shù)學(xué)期望 (文)把一顆骰子投擲兩次.第一次出現(xiàn)的點(diǎn)數(shù)記為a.第二次出現(xiàn)的點(diǎn)數(shù)記為b.試就方程組解答下列各題(1)求方程組只有一組解的概率(2)求方程組只有正數(shù)解的概率 查看更多

 

題目列表(包括答案和解析)

(08年新建二中六模理)有一種密碼,明文是由三個(gè)字符組成,密碼是由明文對(duì)應(yīng)的五個(gè)數(shù)字組成,編碼規(guī)則如下表:明文由表中每一排取一個(gè)字符組成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,對(duì)應(yīng)的密碼由明文對(duì)應(yīng)的數(shù)字按相同的次序排成一組成.

第一排

明文字符

A

B

C

D

密碼字符

11

12

13

14

第二排

明文字符

E

F

G

H

密碼字符

21

22

23

24

第三排

明文字符

M

N

P

Q

密碼字符

1

2

3

4

  設(shè)隨機(jī)變量ξ表示密碼中不同數(shù)字的個(gè)數(shù).

       (Ⅰ)求Pξ=2)

       (Ⅱ)求隨機(jī)變量ξ的分布列和它的數(shù)學(xué)期望.

查看答案和解析>>

 

一、

C(B文)  CBAA  CBBA (D文)   B BD

二、

13.    14.-15    15.    16.②③④

三、

17.解:(1)由

得B=2C或2C=

B+C>不合題意。

由2C=-B知2C=A+C

ABC為等腰三角形

(2)

18.解:(1)由

(2)

19.解:(1)密碼中同數(shù)字的個(gè)數(shù)為2的事件為密碼中只有兩個(gè)數(shù)字,注意到密碼的第1,2 列分別總是1,2

(2)

2

3

4

P

(文)解:(1)當(dāng)且僅當(dāng)時(shí)方程組只有一組解,所以方程組只有一組解的概率

(2)因?yàn)榉匠探M只有正數(shù)解,所以兩直線的交點(diǎn)一定在第一象限,

所以

解得(a,b)可以是(1,4),(1,5),(1,6),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2,),(6,1),(6,2)

所以

20.(1)

(2)過B作DE的平行線GB交A1A于G,

  

21.解:(1)   ①

過原點(diǎn)垂直于I的直線方程    ②

解得①②得

因橢圓中心0(0,0)關(guān)于I的對(duì)稱點(diǎn)在橢圓C的右準(zhǔn)線上,

所以

又因?yàn)镮過橢圓的焦點(diǎn),所以焦點(diǎn)坐標(biāo)為(2,0),

所以

故橢圓方程為

(2)當(dāng)直線m的斜率存在時(shí),得m的方程為代入橢圓方程得

設(shè)

點(diǎn)0到m的距離

由得

解得

當(dāng)m的斜率不存在時(shí),

m的方程為x=-2,也有

且滿足

故直線m的方程為

(文))(1)

(2)當(dāng)m=0時(shí),;

當(dāng)m>0時(shí),

當(dāng)m<0時(shí),

22.解:(1)當(dāng)m=0時(shí),當(dāng)t<0時(shí),x=0

當(dāng)  當(dāng)

(2)因?yàn)槭桥己瘮?shù),

所以只要求在[0,1]上的最大值即可,又

①當(dāng)上為增函數(shù),

所以

②當(dāng)

上為減函數(shù),

所以

解得 

所以當(dāng)

當(dāng)

(3)

(文)解:(1)   ①

過原點(diǎn)垂直于I的直線方程為   ②

解①②得

因?yàn)闄E圓中心0(0,0)關(guān)于I的對(duì)稱點(diǎn)在橢圓C的右準(zhǔn)線上,

所以

又因?yàn)镮過橢圓的焦點(diǎn),所以焦點(diǎn)坐標(biāo)為(2,0),

所以

故橢圓方程為

(2)當(dāng)直線m的斜率存在時(shí),得m的方程為代入橢圓方程得

設(shè)

點(diǎn)0到m的距離

由得

解得

當(dāng)m的斜率不存在時(shí),

m的方程為x=-2,也有

且滿足

故直線m的方程為

 

 


同步練習(xí)冊(cè)答案