(2)若在內(nèi)有意義.求實數(shù)的取值范圍. 查看更多

 

題目列表(包括答案和解析)

函數(shù)是[1,+∞)上的增函數(shù).
(Ⅰ)求正實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)g(x)=x2+2x,在使g(x)≥M對定義域內(nèi)的任意x值恒成立的所有常數(shù)M中,我們把M的最大值M=-1叫做f(x)=x2+2x的下確界,若函數(shù)的定義域為[1,+∞),根據(jù)所給函數(shù)g(x)的下確界的定義,求出當a=1時函數(shù)f(x)的下確界.
(Ⅲ)設b>0,a>1,求證:

查看答案和解析>>

已知函數(shù)和函數(shù),記

(1)當時,若上的最大值是,求實數(shù)的取值范圍;

(2)當時,判斷在其定義域內(nèi)是否有極值,并予以證明;

(3)對任意的,若在其定義域內(nèi)既有極大值又有極小值,試求實數(shù)的取值范圍.

查看答案和解析>>

已知函數(shù);

(1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實數(shù)的取值范圍。

(2)若函數(shù),若在[1,e]上至少存在一個x的值使成立,求實數(shù)的取值范圍。

【解析】第一問中,利用導數(shù),因為在其定義域內(nèi)的單調(diào)遞增函數(shù),所以 內(nèi)滿足恒成立,得到結論第二問中,在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,轉(zhuǎn)換為不等式有解來解答即可。

解:(1),

因為在其定義域內(nèi)的單調(diào)遞增函數(shù),

所以 內(nèi)滿足恒成立,即恒成立,

亦即,

即可  又

當且僅當,即x=1時取等號,

在其定義域內(nèi)為單調(diào)增函數(shù)的實數(shù)k的取值范圍是.

(2)在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,設

 上的增函數(shù),依題意需

實數(shù)k的取值范圍是

 

查看答案和解析>>

已知函數(shù)和函數(shù),記

(1)當時,若上的最大值是,求實數(shù)的取值范圍;

(2)當時,判斷在其定義域內(nèi)是否有極值,并予以證明;

(3)對任意的,若在其定義域內(nèi)既有極大值又有極小值,試求實數(shù)的取值范圍.

查看答案和解析>>

(本小題共12分)

已知函數(shù),

(1)若對于定義域內(nèi)的恒成立,求實數(shù)的取值范圍;

(2)設有兩個極值點,,求證:;

(3)設若對任意的,總存在,使不等式成立,求實數(shù)的取值范圍.

 

查看答案和解析>>


同步練習冊答案