② 時.方程變?yōu)? 即 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)甲乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分(無平局),比賽進行到有一人比對方多2分或打滿6局時停止.設(shè)甲在每局中獲勝的概率為p(p>
1
2
)
,且各局勝負相互獨立.已知第二局比賽結(jié)束時比賽停止的概率為
5
9

(Ⅰ)若右圖為統(tǒng)計這次比賽的局數(shù)n和甲、乙的總得分數(shù)S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請問在第一、第二兩個判斷框中應(yīng)分別填寫什么條件?
(Ⅱ)求p的值;
(Ⅲ)設(shè)ξ表示比賽停止時已比賽的局數(shù),求隨機變量ξ的分布列和數(shù)學(xué)期望Eξ.
注:“n=0”,即為“n←0”或為“n:=0”.

查看答案和解析>>

甲乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分(無平局),比賽進行到有一人比對方多2分或打滿6局時停止.設(shè)甲在每局中獲勝的概率為p,且各局勝負相互獨立.已知第二局比賽結(jié)束時比賽停止的概率為
(Ⅰ)若右圖為統(tǒng)計這次比賽的局數(shù)n和甲、乙的總得分數(shù)S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請問在第一、第二兩個判斷框中應(yīng)分別填寫什么條件?
(Ⅱ)求p的值;
(Ⅲ)設(shè)ξ表示比賽停止時已比賽的局數(shù),求隨機變量ξ的分布列和數(shù)學(xué)期望Eξ.
注:“n=0”,即為“n←0”或為“n:=0”.

查看答案和解析>>

甲乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分(無平局),比賽進行到有一人比對方多2分或打滿6局時停止.設(shè)甲在每局中獲勝的概率為p,且各局勝負相互獨立.已知第二局比賽結(jié)束時比賽停止的概率為
(Ⅰ)若右圖為統(tǒng)計這次比賽的局數(shù)n和甲、乙的總得分數(shù)S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請問在第一、第二兩個判斷框中應(yīng)分別填寫什么條件?
(Ⅱ)求p的值;
(Ⅲ)設(shè)ξ表示比賽停止時已比賽的局數(shù),求隨機變量ξ的分布列和數(shù)學(xué)期望Eξ.
注:“n=0”,即為“n←0”或為“n:=0”.

查看答案和解析>>

甲乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分(無平局),比賽進行到有一人比對方多2分或打滿6局時停止.設(shè)甲在每局中獲勝的概率為p,且各局勝負相互獨立.已知第二局比賽結(jié)束時比賽停止的概率為
(Ⅰ)若右圖為統(tǒng)計這次比賽的局數(shù)n和甲、乙的總得分數(shù)S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請問在第一、第二兩個判斷框中應(yīng)分別填寫什么條件?
(Ⅱ)求p的值;
(Ⅲ)設(shè)ξ表示比賽停止時已比賽的局數(shù),求隨機變量ξ的分布列和數(shù)學(xué)期望Eξ.
注:“n=0”,即為“n←0”或為“n:=0”.

查看答案和解析>>

甲乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分(無平局),比賽進行到有一人比對方多2分或打滿6局時停止.設(shè)甲在每局中獲勝的概率為p,且各局勝負相互獨立.已知第二局比賽結(jié)束時比賽停止的概率為
(Ⅰ)若右圖為統(tǒng)計這次比賽的局數(shù)n和甲、乙的總得分數(shù)S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請問在第一、第二兩個判斷框中應(yīng)分別填寫什么條件?
(Ⅱ)求p的值;
(Ⅲ)設(shè)ξ表示比賽停止時已比賽的局數(shù),求隨機變量ξ的分布列和數(shù)學(xué)期望Eξ.
注:“n=0”,即為“n←0”或為“n:=0”.

查看答案和解析>>


同步練習(xí)冊答案