(2)若成立的正整數(shù)n的最小值. 查看更多

 

題目列表(包括答案和解析)

正項(xiàng)數(shù)列{an}滿足a1=2,點(diǎn)An
an
,
an+1
)在雙曲線y2-x2=1上,點(diǎn)(bn,Tn)在直線y=-
1
2
x+1上,其中Tn是數(shù)列{bn}的前n項(xiàng)和.
①求數(shù)列{an}、{bn}的通項(xiàng)公式;
②設(shè)Cn=anbn,證明Cn+1<Cn
③若m-7anbn>0恒成立,求正整數(shù)m的最小值.

查看答案和解析>>

正項(xiàng)數(shù)列{an}滿足a1=2,點(diǎn)An數(shù)學(xué)公式)在雙曲線y2-x2=1上,點(diǎn)(bn,Tn)在直線y=-數(shù)學(xué)公式x+1上,其中Tn是數(shù)列{bn}的前n項(xiàng)和.
①求數(shù)列{an}、{bn}的通項(xiàng)公式;
②設(shè)Cn=anbn,證明Cn+1<Cn
③若m-7anbn>0恒成立,求正整數(shù)m的最小值.

查看答案和解析>>

正項(xiàng)數(shù)列{an}滿足a1=2,點(diǎn)An)在雙曲線y2-x2=1上,點(diǎn)(bn,Tn)在直線y=-x+1上,其中Tn是數(shù)列{bn}的前n項(xiàng)和.
①求數(shù)列{an}、{bn}的通項(xiàng)公式;
②設(shè)Cn=anbn,證明Cn+1<Cn
③若m-7anbn>0恒成立,求正整數(shù)m的最小值.

查看答案和解析>>

正項(xiàng)數(shù)列{an}滿足a1=2,點(diǎn)An)在雙曲線y2-x2=1上,點(diǎn)(bn,Tn)在直線y=-x+1上,其中Tn是數(shù)列{bn}的前n項(xiàng)和.
①求數(shù)列{an}、{bn}的通項(xiàng)公式;
②設(shè)Cn=anbn,證明Cn+1<Cn
③若m-7anbn>0恒成立,求正整數(shù)m的最小值.

查看答案和解析>>

設(shè)數(shù)列的通項(xiàng)公式為。數(shù)列定義如下:對(duì)于正整數(shù)m,是使得不等式成立的所有n中的最小值。  (1)若,求b3;   (2)若,求數(shù)列的前2m項(xiàng)和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

一、選擇題(本大題共12小題,每小題5分,共計(jì)60分)

1.D  2.B  3.A  4.B  5.C  6.C  7.B  8.C  9.D  10.A  11.D  12.D

1,3,5

13.-1     14.     15.     16.②③

三、解答題(本大題共6小題,共計(jì)70分)

17.(本小題滿分10分)

    解:化簡(jiǎn)條件得                               …………2分

    根據(jù)集合中元素個(gè)數(shù)集合B分類討論,

    當(dāng)

                                                                                    …………4分

    當(dāng)               …………6分

    當(dāng)                                                                        …………2分

                                                                                                              …………8分

    綜上所述,                                                   …………10分

18.(本小題滿分12分)

    解:

                      …………2分

    即                                                        …………4分

   

    即                                                                         …………8分

    又

                                                                 …………10分

   

                                                                                                                              …………12分

19.(本小題滿分12分)

    解:(1)取出的兩個(gè)球都是黑球,則甲盒恰好有兩個(gè)黑球的事件記為A1,

                                                                                   …………2分

    取出的兩個(gè)球都是紅球,則甲盒恰好有兩個(gè)黑球的事件記為A2

                                                                                …………4分

    所以                                                                   …………6分

   (2)                                                                  …………7分

                                                                                                     …………8分

                                                                              …………9分

    ξ得分布列為

 

 

 

                                                                 …………12分

 

20.(本小題滿分12分)

    證明:(I)在直三棱柱ABC-A1B1C1中,易知面ACC1A1⊥面ABC,

    ∵∠ACB = 90°,

∴BC⊥面ACC1A1,                                                                                 …………2分

∵AM面ACC1A1

∴BC⊥AM

∵AM⊥BA1,且BC∩BA1=B

∴AM⊥平面A1BC                                                                                           …………4分

   (II)設(shè)AM與A1C的交點(diǎn)為O,連結(jié)BO,由(I)可知AM⊥OB,且AM⊥OC,所以∠BOC為二面角B ? AM ? C的平在角                                                                                                      …………5分

    在Rt△ACM和Rt△A1AC中,∠OAC +∠ACO=90°,

    ∴∠AA1C =∠MAC

∴Rt△ACM∽R(shí)t△A1AC

∴AC2 = MC?AA1

                                                                                                         …………7分

,故所求二面角的大小為45°                                         …………9分

   (III)設(shè)點(diǎn)C到平面ABM的距離為h,易知BO=,

可得                                        …………10分

∴點(diǎn)C到平面ABM的距離為                                                                   …………12分

解法二:(I)同解法一

   (II)如圖以C為原點(diǎn),CA,CB,CC1所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,則

   

    即                                      …………6分

    設(shè)向量,則

    的平面AMB的一個(gè)法向量為

    是平面AMC的一個(gè)法向量                        …………8分

   

    易知,所夾的角等于二面角B ? AM ? C的大小,故所求二面角的大小為45°

                                                                                                                                     …………9分

   (III)向量即為所求距離     …………10分

                                                                                     …………12分

∴點(diǎn)C到平面ABM的距離為                                                                   …………12分

21.(本小題滿分12分)

   (1)解:,

   

    即                         …………3分

    ,

                                                   …………6分

   (II)由(I)及,                                     …………8分

    ,

          (1)

          (2)

   (2)-(1)得,

                                         …………10分

    要使

    成立的正整數(shù)n的最小值為5.                                …………12分

22.(本小題滿分12分)

    解:(I)                             …………2分

    處的切線互相平行

                                                                                                        …………3分

   

                                                                                                                      …………4分

   (II)

   

                                                                              …………5分

   

                                 …………7分

   

                                                                                                           …………9分

    ∴滿足條件的a的值滿足下列不等式組

     ①,或

    不等式組①的解集為空集,解不等式組②得

    綜上所述,滿足條件的a的取值范圍是:                             …………12分

 

 

 

 

 


同步練習(xí)冊(cè)答案