3.若直線 相切.則a的值為 ( ) A. 1 B. -1 C. ±1 D. ±2 查看更多

 

題目列表(包括答案和解析)

若直線x-y+k=0與圓x2+y2=1相切,則k的值為( 。

查看答案和解析>>

若直線y=2x+m與圓x2+y2+2x-4y=0相切,則實(shí)數(shù)m的值為(  )

查看答案和解析>>

若直線y=x-3與曲線y=ex+a相切,則實(shí)數(shù)a的值為(  )

查看答案和解析>>

若直線3x+4y+c=0與圓x2+y2=1相切,則c的值為( 。

查看答案和解析>>

若直線按向量a=(1,-1)平移后與圓相切,則c的值為(    )

A.8或-2         B.6或-4        

C.4或-6         D.2或-8

查看答案和解析>>

福州八中2006級高中數(shù)學(xué)選修4-2模塊考試

 

一、選擇題    BDAC

二、填空題

20080925

三、解答題

7.解:(1)變換后的方程仍為直線,該變換是恒等變換.(3分)

(2)經(jīng)過變化后變?yōu)椋?2,5),它們關(guān)于y軸對稱,故該變換為關(guān)于y軸的反射變換.

(6分)

(3)所給方程是以原點(diǎn)為圓心,2為半徑的圓,設(shè)A(x,y)為曲線上的任意一點(diǎn),經(jīng)過

變換后的點(diǎn)為A1(x1,y1),則

將之代入到可得方程,此方程表示橢圓,所給方程表示的是圓,

該變換是伸縮變換.(10分)

8.解:特征矩陣為.(1分)

特征多項(xiàng)式為,

0,解得矩陣A的特征值=0,,(2分)

0代入特征矩陣得,

以它為系數(shù)矩陣的二元一次方程組是

解之得,可以為任何非零實(shí)數(shù),不妨取,于是,是矩陣A屬于

特征值的一個(gè)特征向量.

再將代入特征矩陣得,

以它為系數(shù)矩陣的二元一次方程組是

解之得,可以為任何非零實(shí)數(shù),不妨取,于是,是矩陣A的屬于特征值的一個(gè)特征向量.(6分)

解得 .(9分)

所以,A.(10分)

福州八中2006級高中數(shù)學(xué)選修4-5模塊考試

一、選擇題   BACD

二、填空題

5.      6.15

三、解答題

7.證法一:(作差比較法)∵=,又且a、b∈R+,

∴b>a>0.又x>y>0,∴bx>ay. ∴>0,即.

證法二:(分析法)

(分段函數(shù)3分,圖象3分,共6分)

(10分)

 

(10分)

第Ⅱ卷

一、選擇題  BCAD

二、填空題

5.    6.

三、解答題

7.解:(Ⅰ)由f(0)=,得2a-=,∴2a=,則a=.由

f()=,得+-=,∴b=1,2分  ∴f(x) =cos2x+sinxcosx -=cos2x+sin2x=sin(2x+).………4分

(Ⅱ)由f(x)=sin(2x+)又由+2kπ≤2x++2kπ,得+kπ≤x≤+kπ,

∴f(x)的單調(diào)遞增區(qū)間是[+kπ,+kπ](k∈Z).?…………8分

(Ⅲ)∵f(x)=sin2(x+),∴函數(shù)的圖象右移后對應(yīng)的函數(shù)可成為奇函數(shù).10分

<form id="o8gro"></form><style id="o8gro"><strong id="o8gro"><abbr id="o8gro"></abbr></strong></style>
<input id="o8gro"></input>

<center id="o8gro"><tbody id="o8gro"><dfn id="o8gro"></dfn></tbody></center>

高三數(shù)學(xué)(理)第一次質(zhì)量檢查試卷 第3頁 共4頁                                              高三數(shù)學(xué)(理)第一次質(zhì)量檢查試卷 第4頁 共4頁

                            …………1分

的等比中項(xiàng)為   ……………2分

,  ……………3分

                          ………………4分

(2)          ………………5分

是以為首項(xiàng),1為公差的等差數(shù)列                         ………………6分

                                          ………………7分

(3)由(2)知

………………9分

               …………………10分

 

 

 

 


同步練習(xí)冊答案