已知函數(shù) (.都是常數(shù).).且當(dāng)和時(shí). 查看更多

 

題目列表(包括答案和解析)

 已知函數(shù)的定義域?yàn)?sub>,對(duì)于任意正數(shù)a、b,都有,其中p是常數(shù),且.,當(dāng)時(shí),總有.

(1)求(寫成關(guān)于p的表達(dá)式);

   (2)判斷上的單調(diào)性,并加以證明;

   (3)解關(guān)于的不等式 .

 

 

 

 

 

 

查看答案和解析>>

(本題滿分12分) 已知函數(shù)的定義域?yàn)?IMG src='http://thumb.zyjl.cn/pic1/img/20091009/20091009114523002.gif' width=48 height=21>,對(duì)于任意正數(shù)a、b,都有,其中p是常數(shù),且.,當(dāng)時(shí),總有.

(1)求(寫成關(guān)于p的表達(dá)式);

   (2)判斷上的單調(diào)性,并加以證明;

   (3)解關(guān)于的不等式 .

查看答案和解析>>

已知常數(shù)a、b都是正整數(shù),函數(shù)f(x)=
x
bx+1
(x>0),數(shù)列{an}滿足a1=a,
1
an+1
=f(
1
an
)
(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a=8b,且等比數(shù)列{bn}同時(shí)滿足:①b1=a1,b2=a5;②數(shù)列{bn}的每一項(xiàng)都是數(shù)列{an}中的某一項(xiàng).試判斷數(shù)列{bn}是有窮數(shù)列或是無窮數(shù)列,并簡(jiǎn)要說明理由;
(3)對(duì)問題(2)繼續(xù)探究,若b2=am(m>1,m是常數(shù)),當(dāng)m取何正整數(shù)時(shí),數(shù)列{bn}是有窮數(shù)列;當(dāng)m取何正整數(shù)時(shí),數(shù)列{bn}是無窮數(shù)列,并說明理由.

查看答案和解析>>

已知常數(shù)a、b都是正整數(shù),函數(shù)f(x)=
x
bx+1
(x>0),數(shù)列{an}滿足a1=a,
1
an+1
=f(
1
an
)
(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a=8b,且等比數(shù)列{bn}同時(shí)滿足:①b1=a1,b2=a5;②數(shù)列{bn}的每一項(xiàng)都是數(shù)列{an}中的某一項(xiàng).試判斷數(shù)列{bn}是有窮數(shù)列或是無窮數(shù)列,并簡(jiǎn)要說明理由;
(3)對(duì)問題(2)繼續(xù)探究,若b2=am(m>1,m是常數(shù)),當(dāng)m取何正整數(shù)時(shí),數(shù)列{bn}是有窮數(shù)列;當(dāng)m取何正整數(shù)時(shí),數(shù)列{bn}是無窮數(shù)列,并說明理由.

查看答案和解析>>

(2011•成都模擬)對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當(dāng)Φ(x)=2x時(shí)
①求f0(x)和fk(x)的解析式;
②求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線;
(2)若Φ(x)=x2,則是否存在正整數(shù)k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

(2)解:高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

          高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

          同理可得:高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

          高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,

由余弦定理可得,高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。     。。。。。。。。。。。。。11分

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。    。。。。。。。。。。。。。14分

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。            高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

            高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。 。。。。。。。。。。。。。6分

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。  。。。。。。。。。4分

 

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

 


同步練習(xí)冊(cè)答案