題目列表(包括答案和解析)
青年歌手電視大賽共有10名選手參加,并請了7名評委,如圖所示的莖葉圖是7名評委給參加最后決賽的兩位選手甲、乙評定的成績,流程圖用來編寫程序統(tǒng)計每位選手的成績(各評委所給有效分數(shù)的平均值),試根據(jù)所給條件回答下列問題:
(1) 根據(jù)莖葉圖,選手乙的成績中,眾數(shù)是多少?選手甲的成績中,中位數(shù)是多少?
(2) 在流程圖(如圖所示)中,用k表示評委人數(shù),用a表示選手的成績(各評委所給有效分數(shù)的平均值).橫線①、②處應(yīng)填什么?
(3) 根據(jù)流程圖,甲、乙的成績分別是多少?
青年歌手大獎賽有10名選手參加,并請了12名評委.為了減小個別評委所給極端分數(shù)的影響,必須去掉一個最高分和一個最低分后再求平均分.用算法語句表示:
輸入12名評委所打的分數(shù)(i=1,2,…,12),用函數(shù)Max()和Min()分別求出(i=1,2,…,12)中的最大值和最小值,最后輸出該名歌手的成績.
青年歌手大獎賽有
10名選手參加,并請了12名評委.為了減小個別評委所給極端分數(shù)的影響,必須去掉一個最高分和一個最低分后再求平均分.用算法語句表示:輸入
12名評委所打的分數(shù)(i=1,2,…,12),用函數(shù)Max()和Min()分別求出(i=1,2,…,12)中的最大值和最小值,最后輸出該名歌手的成績.一、ABCBD BCABD
二、11.2 12. 13.4 14.10 15. ①②③
三、16. 解:(1), 3分
由已知,得. 6分
(2)由(1)得, 8分
當時,的最小值為, 10分
由,得值的集合為. 13分
17. 解:(I)取AB的中點O,連接OP,OC PA=PB POAB
又在中,,
在中,,又,故有
又, 面ABC 4分
又 PO面PAB,面PAB面ABC 6分
(Ⅱ)以O(shè)為坐標原點, 分別以O(shè)B,OC,OP為軸,軸,軸建立坐標系,
如圖,則A 8分
設(shè)平面PAC的一個法向量為。
得
令,則 11分
設(shè)直線PB與平面PAC所成角為 ,
于是 13分
18. 解:(1); 4分
(2)消費總額為1500元的概率是: 5分
消費總額為1400元的概率是: 6分
消費總額為1300元的概率是:
=,
所以消費總額大于或等于1300元的概率是; 8分
(3),
,
=
。所以的分布列為:
0
1
2
3
0.294
0.448
0.222
0.036
數(shù)學期望是:。 13分
19. 解:∵的右焦點
∴橢圓的, .橢圓方程為.
(Ⅰ)當時,故橢圓方程為, 3分
(Ⅱ)依題意設(shè)直線的方程為:,
聯(lián)立 得點的坐標為. 4分
將代入得.
設(shè)、,由韋達定理得,. 5分
又,.
7分
有實根, ∴點可以在圓上. 8分
(Ⅲ)假設(shè)存在滿足條件的實數(shù),
由解得:. 10分
∴,,又.即的邊長分別是、、 .時,能使的邊長是連續(xù)的自然數(shù)。 13分
20. 解:(1). 1分
當時,,在上單調(diào)遞增; 2分
當,時,,在上單調(diào)遞減;
時,,在上單調(diào)遞增. 3分
綜上所述,當時,的單調(diào)遞增區(qū)間為;當時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為. 4分
(2)充分性:時,由(1)知,在x=1處有極小值也是最小值,
即。而在上單調(diào)遞減,在上單調(diào)遞增,
所以在上有唯一的一個零點x=1. 6分
必要性:若函數(shù)f(x)存在唯一零點,即方程=0在上有唯一解,
因, 由(1)知,在處有極小值也是最小值f(a),
f(a)=0,即. 7分
令, .
當時,,在上單調(diào)遞增;當時,,
在上單調(diào)遞減。,=0只有唯一解.
因此=0在上有唯一解時必有.
綜上:在時, =0在上有唯一解的充要條件是. 9分
(3)證明:∵1<x<2, ∴.
令,∴,11分
由(1)知,當時,,∴,
∴.∴, 12分
∴F(x)在(1,2)上單調(diào)遞增,∴,
∴!. 14分
21. (Ⅰ)解:考慮在矩陣作用下,求出變換后的三角形的頂點坐標,從而求得三角形的面積,可先求得,由=,得點在矩陣作用下變換所得到的點,同理求得在矩陣作用下變換所得到的點分別是,,計算得△的面積為3. 7分
(Ⅱ)解:直線的極坐標方程,則,
即,所以直線的直角坐標方程為; 2分
設(shè),其中,則P到直線的距離
,其中,∴ 當時,的最大值為;當時,的最小值為。 7分
(Ⅲ)解:由柯西不等式,得, 2分
即.由條件,得.解得, 2分
當且僅當 時等號成立.代入時,;時,.所以,的取值范圍是. 7分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com