.如圖.設(shè)拋物線()的準(zhǔn)線與軸交于.焦點(diǎn)為,以.為焦點(diǎn).離心率的橢圓與拋物線在軸上方的一個(gè)交點(diǎn)為. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)
如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為;以為焦點(diǎn),離心率的橢圓與拋物線軸上方的交點(diǎn)為,延長(zhǎng)交拋物線于點(diǎn),是拋物線上一動(dòng)點(diǎn),且M之間運(yùn)動(dòng).
(1)當(dāng)時(shí),求橢圓的方程;
(2)當(dāng)的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求面積的最大值.

查看答案和解析>>

(本小題滿分13分)

如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為;以為焦點(diǎn),離心率的橢圓與拋物線軸上方的交點(diǎn)為,延長(zhǎng)交拋物線于點(diǎn),是拋物線上一動(dòng)點(diǎn),且M之間運(yùn)動(dòng).

(1)當(dāng)時(shí),求橢圓的方程;

(2)當(dāng)的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求面積的最大值.

 

 

查看答案和解析>>

(本小題滿分13分)
如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為;以為焦點(diǎn),離心率的橢圓與拋物線軸上方的交點(diǎn)為,延長(zhǎng)交拋物線于點(diǎn),是拋物線上一動(dòng)點(diǎn),且M之間運(yùn)動(dòng).
(1)當(dāng)時(shí),求橢圓的方程;
(2)當(dāng)的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求面積的最大值.

查看答案和解析>>

(本小題滿分13分)

如圖,已知拋物線與圓交于M、N兩點(diǎn),

(Ⅰ)求拋物線的方程;

(Ⅱ)設(shè)直線與圓相切.

(ⅰ)若直線與拋物線也相切,求直線的方程;

(ⅱ)若直線與拋物線交與不同的A、B兩點(diǎn),求的取值范圍.

查看答案和解析>>

(本小題滿分13分)

如圖,已知拋物線與圓交于M、N兩點(diǎn),

(Ⅰ)求拋物線的方程;

(Ⅱ)設(shè)直線與圓相切.

(。┤糁本與拋物線也相切,求直線的方程;

(ⅱ)若直線與拋物線交與不同的A、B兩點(diǎn),求的取值范圍.

查看答案和解析>>

一、ABCBD  BCABD

二、11.2    12.     13.4    14.10    15. ①②③

三、16. 解:(1),             3分

由已知,得.         6分

(2)由(1)得,      8分

當(dāng)時(shí),的最小值為,             10分

,得值的集合為.   13分

17. 解:(I)取AB的中點(diǎn)O,連接OP,OC      高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。PA=PB   高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。PO高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。AB

    又在高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。中,高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

    在高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。中,高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,又高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,故有高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

      高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。   又高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。 高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。面ABC       4分

      又  PO高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。面PAB,高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。面PAB高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。面ABC              6分

(Ⅱ)以O(shè)為坐標(biāo)原點(diǎn), 分別以O(shè)B,OC,OP為高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。軸,高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。軸,高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。軸建立坐標(biāo)系,

高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。如圖,則A高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。   8分

 高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

 設(shè)平面PAC的一個(gè)法向量為高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

       高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。     得高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

  令高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,則高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。     11分

設(shè)直線PB與平面PAC所成角為高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

于是高考資源網(wǎng)(www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。     13分

18. 解:(1);                4分

(2)消費(fèi)總額為1500元的概率是:                 5分

消費(fèi)總額為1400元的概率是:    6分

消費(fèi)總額為1300元的概率是:

,

所以消費(fèi)總額大于或等于1300元的概率是;              8分

(3)

,

。所以的分布列為:

0

1

2

3

0.294

0.448

0.222

0.036

數(shù)學(xué)期望是:。       13分

19. 解:∵的右焦點(diǎn) 

∴橢圓的半焦距,又

∴橢圓的, .橢圓方程為.

(Ⅰ)當(dāng)時(shí),故橢圓方程為,      3分

(Ⅱ)依題意設(shè)直線的方程為:,

聯(lián)立  得點(diǎn)的坐標(biāo)為.      4分

代入.

設(shè)、,由韋達(dá)定理得,.   5分

.

 

                7分

有實(shí)根, ∴點(diǎn)可以在圓上.        8分

(Ⅲ)假設(shè)存在滿足條件的實(shí)數(shù)

解得:.     10分

,,又.即的邊長(zhǎng)分別是、 .時(shí),能使的邊長(zhǎng)是連續(xù)的自然數(shù)。      13分

20. 解:(1).                    1分

   當(dāng)時(shí),上單調(diào)遞增;                2分

當(dāng)時(shí),,上單調(diào)遞減;

時(shí),,上單調(diào)遞增.            3分

綜上所述,當(dāng)時(shí),的單調(diào)遞增區(qū)間為;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.                     4分

(2)充分性:時(shí),由(1)知,在x=1處有極小值也是最小值,

。而上單調(diào)遞減,在上單調(diào)遞增,

所以上有唯一的一個(gè)零點(diǎn)x=1.                    6分

必要性:若函數(shù)f(x)存在唯一零點(diǎn),即方程=0在上有唯一解,

, 由(1)知,處有極小值也是最小值f(a),

 f(a)=0,即.                        7分

,

當(dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),,

上單調(diào)遞減。,=0只有唯一解

因此=0在上有唯一解時(shí)必有

綜上:在時(shí), =0在上有唯一解的充要條件是.    9分

(3)證明:∵1<x<2, ∴.

 令,∴,11分

由(1)知,當(dāng)時(shí),,∴,

.∴,                      12分

∴F(x)在(1,2)上單調(diào)遞增,∴

!.             14分

21. (Ⅰ)解:考慮在矩陣作用下,求出變換后的三角形的頂點(diǎn)坐標(biāo),從而求得三角形的面積,可先求得,由,得點(diǎn)在矩陣作用下變換所得到的點(diǎn),同理求得在矩陣作用下變換所得到的點(diǎn)分別是,,計(jì)算得△的面積為3.                7分

(Ⅱ)解:直線的極坐標(biāo)方程,則

    即,所以直線的直角坐標(biāo)方程為;     2分

設(shè),其中,則P到直線的距離

,其中,∴ 當(dāng)時(shí),的最大值為;當(dāng)時(shí),的最小值為。         7分

(Ⅲ)解:由柯西不等式,得,    2分

.由條件,得.解得,  2分

當(dāng)且僅當(dāng) 時(shí)等號(hào)成立.代入時(shí),;時(shí),.所以,的取值范圍是.            7分

 

 


同步練習(xí)冊(cè)答案