21解:(Ⅰ) 所求的橢圓方程為 查看更多

 

題目列表(包括答案和解析)

仔細閱讀下面問題的解法:
設A=[0,1],若不等式21-x-a>0在A上有解,求實數a的取值范圍.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調遞減,f(x)max=f(0)=2
∴a<2即為所求.
學習以上問題的解法,解決下面的問題:
(1)已知函數f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數及反函數的定義域A;
(2)對于(1)中的A,設g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實數a的取值范圍.

查看答案和解析>>

仔細閱讀下面問題的解法:
設A=[0,1],若不等式21-x-a>0在A上有解,求實數a的取值范圍.
解:由已知可得 a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調遞減,f(x)max=f(0)=2
∴a<2即為所求.
學習以上問題的解法,解決下面的問題:
(1)已知函數f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數及反函數的定義域A;
(2)對于(1)中的A,設g(x)=數學公式x∈A,試判斷g(x)的單調性;(不證)
(3)又若B={x|數學公式>2x+a-5},若A∩B≠Φ,求實數a的取值范圍.

查看答案和解析>>

仔細閱讀下面問題的解法:
設A=[0,1],若不等式21-x-a>0在A上有解,求實數a的取值范圍.
由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調遞減,f(x)max=f(0)=2
∴a<2即為所求.
學習以上問題的解法,解決下面的問題:
(1)已知函數f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數及反函數的定義域A;
(2)對于(1)中的A,設g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實數a的取值范圍.

查看答案和解析>>

某港口海水的深度(米)是時間(時)()的函數,記為:

已知某日海水深度的數據如下:

(時)

0

3

6

9

12

15

18

21

24

(米)

10.0

13.0

9.9

7.0

10.0

13.0

10.1

7.0

10.0

經長期觀察,的曲線可近似地看成函數的圖象

(I)試根據以上數據,求出函數的振幅、最小正周期和表達式;

(II)一般情況下,船舶航行時,船底離海底的距離為米或米以上時認為是安全的(船舶停靠時,船底只需不碰海底即可)。某船吃水深度(船底離水面的距離)為米,如果該船希望在同一天內安全進出港,請問,它至多能在港內停留多長時間(忽略進出港所需時間)

【解析】第一問中利用三角函數的最小正周期為: T=12   振幅:A=3,b=10,  

第二問中,該船安全進出港,需滿足:即:          ∴  ,可解得結論為得到。

 

查看答案和解析>>

要將甲、乙兩種大小不同的鋼板截成A、B兩種規(guī)格,每張鋼板可同時截得A、B兩種規(guī)格的小鋼板的塊數如下表所示:

規(guī)格類型

鋼板類型

A

B

2

1

1

3

已知庫房中現有甲、乙兩種鋼板的數量分別為5張和10張,市場急需A、B兩種規(guī)格的成品數分別為15塊和27塊.

(1)問各截這兩種鋼板多少張可得到所需的成品數,且使所用的兩張鋼板的總張數最少?

(2)有5個同學對線性規(guī)劃知識了解不多,但是畫出了可行域,他們每個人都在可行域的整點中隨意取出一解,求恰好有2個人取到最優(yōu)解的概率.

查看答案和解析>>


同步練習冊答案