題目列表(包括答案和解析)
(2013山東青島二中測試)一交流電流的圖象如圖所示,由圖可知( )
A.用電流表測該電流其示數(shù)為14.1 A
B.該交流電流的頻率為50Hz
C.該交流電流通過10Ω電阻時,電阻消耗的電功率為1000 W
D.該交流電流瞬時值表達式為i=14.1sin628t A
【答案】CD
【解析】根據(jù)圖像知交流電的有效值為10A,則電流表示數(shù)為有效值10 A,A項錯;周期T=0.01s,頻率為100Hz,B項錯;通過10Ω的電阻,電功率W,C項正確;瞬時值表達式為A=14.1sin628t A,D項正確。
(2013山東青島二中測試)一矩形線圈,在勻強磁場中繞垂直磁感線的對稱軸轉動,形成如圖所示的交變電動勢圖象,根據(jù)圖象提供的信息,以下說法正確的是 ( )
A.線圈轉動的角速度為rad/s
B.電動勢的有效值14.1V
C.t = 1.0×10?2s時,線圈平面和磁場方向的夾角30°
D.t = 1.5×10?2s時,穿過線圈平面的磁通量最大
【答案】ABC
【解析】角速度rad/s,A項正確;電動勢的有效值V,B項正確;電動勢的瞬時值(V),將t = 1.0×10?2s代入該式,解得,這是線圈從中性面開始轉過的夾角,故線圈平面和磁場方向的夾角30°,C項正確;t = 1.5×10?2s時,線圈平面與磁場平行,磁通量最小,D項錯。
在測定電阻的實驗中,比較簡便、直觀的方法有半偏法、替代法等:
【小題1】.在測定電流表內阻Rg的實驗中,使用如圖甲所示的電路,當S2斷開,S1閉合,且R1調到9900Ω時,電流表的指針轉到滿偏0.2mA,再閉合S2,將R2調到90Ω時,電流表指針恰好指在一半刻度,則電流表的內阻Rg= ② Ω,此值較Rg的真實值 ③ (填偏大、偏小或相等).
【小題2】在用替代法測電阻的實驗中,測量電路如乙圖所示,圖中R是滑動變阻器,Rs是電阻箱,Rx是待測高阻值電阻,S2是單刀雙置開關,G是電流表。實驗按以下步驟進行,并將正確答案填在圖中橫線上。
①.調節(jié)滑動變阻器的滑動片P將R電阻值調至最大,閉合開關S1,將開關S2撥向位置“1”,調節(jié)P的位置,使電流表指示某一合適的刻度I;
②.再將開關S2撥向位置“2”,保持 ④ 位置不變,調節(jié) ⑤ ,使電流表指示的刻度仍為I,讀出電阻箱Rs值,則Rx =Rs。
第十部分 磁場
第一講 基本知識介紹
《磁場》部分在奧賽考剛中的考點很少,和高考要求的區(qū)別不是很大,只是在兩處有深化:a、電流的磁場引進定量計算;b、對帶電粒子在復合場中的運動進行了更深入的分析。
一、磁場與安培力
1、磁場
a、永磁體、電流磁場→磁現(xiàn)象的電本質
b、磁感強度、磁通量
c、穩(wěn)恒電流的磁場
*畢奧-薩伐爾定律(Biot-Savart law):對于電流強度為I 、長度為dI的導體元段,在距離為r的點激發(fā)的“元磁感應強度”為dB 。矢量式d= k,(d表示導體元段的方向沿電流的方向、為導體元段到考查點的方向矢量);或用大小關系式dB = k結合安培定則尋求方向亦可。其中 k = 1.0×10?7N/A2 。應用畢薩定律再結合矢量疊加原理,可以求解任何形狀導線在任何位置激發(fā)的磁感強度。
畢薩定律應用在“無限長”直導線的結論:B = 2k ;
*畢薩定律應用在環(huán)形電流垂直中心軸線上的結論:B = 2πkI ;
*畢薩定律應用在“無限長”螺線管內部的結論:B = 2πknI 。其中n為單位長度螺線管的匝數(shù)。
2、安培力
a、對直導體,矢量式為 = I;或表達為大小關系式 F = BILsinθ再結合“左手定則”解決方向問題(θ為B與L的夾角)。
b、彎曲導體的安培力
⑴整體合力
折線導體所受安培力的合力等于連接始末端連線導體(電流不變)的的安培力。
證明:參照圖9-1,令MN段導體的安培力F1與NO段導體的安培力F2的合力為F,則F的大小為
F =
= BI
= BI
關于F的方向,由于ΔFF2P∽ΔMNO,可以證明圖9-1中的兩個灰色三角形相似,這也就證明了F是垂直MO的,再由于ΔPMO是等腰三角形(這個證明很容易),故F在MO上的垂足就是MO的中點了。
證畢。
由于連續(xù)彎曲的導體可以看成是無窮多元段直線導體的折合,所以,關于折線導體整體合力的結論也適用于彎曲導體。(說明:這個結論只適用于勻強磁場。)
⑵導體的內張力
彎曲導體在平衡或加速的情形下,均會出現(xiàn)內張力,具體分析時,可將導體在被考查點切斷,再將被切斷的某一部分隔離,列平衡方程或動力學方程求解。
c、勻強磁場對線圈的轉矩
如圖9-2所示,當一個矩形線圈(線圈面積為S、通以恒定電流I)放入勻強磁場中,且磁場B的方向平行線圈平面時,線圈受安培力將轉動(并自動選擇垂直B的中心軸OO′,因為質心無加速度),此瞬時的力矩為
M = BIS
幾種情形的討論——
⑴增加匝數(shù)至N ,則 M = NBIS ;
⑵轉軸平移,結論不變(證明從略);
⑶線圈形狀改變,結論不變(證明從略);
*⑷磁場平行線圈平面相對原磁場方向旋轉α角,則M = BIScosα ,如圖9-3;
證明:當α = 90°時,顯然M = 0 ,而磁場是可以分解的,只有垂直轉軸的的分量Bcosα才能產生力矩…
⑸磁場B垂直O(jiān)O′軸相對線圈平面旋轉β角,則M = BIScosβ ,如圖9-4。
證明:當β = 90°時,顯然M = 0 ,而磁場是可以分解的,只有平行線圈平面的的分量Bcosβ才能產生力矩…
說明:在默認的情況下,討論線圈的轉矩時,認為線圈的轉軸垂直磁場。如果沒有人為設定,而是讓安培力自行選定轉軸,這時的力矩稱為力偶矩。
二、洛侖茲力
1、概念與規(guī)律
a、 = q,或展開為f = qvBsinθ再結合左、右手定則確定方向(其中θ為與的夾角)。安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)。
b、能量性質
由于總垂直與確定的平面,故總垂直 ,只能起到改變速度方向的作用。結論:洛侖茲力可對帶電粒子形成沖量,卻不可能做功;颍郝鍋銎澚墒箮щ娏W拥膭恿堪l(fā)生改變卻不能使其動能發(fā)生改變。
問題:安培力可以做功,為什么洛侖茲力不能做功?
解說:應該注意“安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)”這句話的確切含義——“宏觀體現(xiàn)”和“完全相等”是有區(qū)別的。我們可以分兩種情形看這個問題:(1)導體靜止時,所有粒子的洛侖茲力的合力等于安培力(這個證明從略);(2)導體運動時,粒子參與的是沿導體棒的運動v1和導體運動v2的合運動,其合速度為v ,這時的洛侖茲力f垂直v而安培力垂直導體棒,它們是不可能相等的,只能說安培力是洛侖茲力的分力f1 = qv1B的合力(見圖9-5)。
很顯然,f1的合力(安培力)做正功,而f不做功(或者說f1的正功和f2的負功的代數(shù)和為零)。(事實上,由于電子定向移動速率v1在10?5m/s數(shù)量級,而v2一般都在10?2m/s數(shù)量級以上,致使f1只是f的一個極小分量。)
☆如果從能量的角度看這個問題,當導體棒放在光滑的導軌上時(參看圖9-6),導體棒必獲得動能,這個動能是怎么轉化來的呢?
若先將導體棒卡住,回路中形成穩(wěn)恒的電流,電流的功轉化為回路的焦耳熱。而將導體棒釋放后,導體棒受安培力加速,將形成感應電動勢(反電動勢)。動力學分析可知,導體棒的最后穩(wěn)定狀態(tài)是勻速運動(感應電動勢等于電源電動勢,回路電流為零)。由于達到穩(wěn)定速度前的回路電流是逐漸減小的,故在相同時間內發(fā)的焦耳熱將比導體棒被卡住時少。所以,導體棒動能的增加是以回路焦耳熱的減少為代價的。
2、僅受洛侖茲力的帶電粒子運動
a、⊥時,勻速圓周運動,半徑r = ,周期T =
b、與成一般夾角θ時,做等螺距螺旋運動,半徑r = ,螺距d =
這個結論的證明一般是將分解…(過程從略)。
☆但也有一個問題,如果將分解(成垂直速度分量B2和平行速度分量B1 ,如圖9-7所示),粒子的運動情形似乎就不一樣了——在垂直B2的平面內做圓周運動?
其實,在圖9-7中,B1平行v只是一種暫時的現(xiàn)象,一旦受B2的洛侖茲力作用,v改變方向后就不再平行B1了。當B1施加了洛侖茲力后,粒子的“圓周運動”就無法達成了。(而在分解v的處理中,這種局面是不會出現(xiàn)的。)
3、磁聚焦
a、結構:見圖9-8,K和G分別為陰極和控制極,A為陽極加共軸限制膜片,螺線管提供勻強磁場。
b、原理:由于控制極和共軸膜片的存在,電子進磁場的發(fā)散角極小,即速度和磁場的夾角θ極小,各粒子做螺旋運動時可以認為螺距彼此相等(半徑可以不等),故所有粒子會“聚焦”在熒光屏上的P點。
4、回旋加速器
a、結構&原理(注意加速時間應忽略)
b、磁場與交變電場頻率的關系
因回旋周期T和交變電場周期T′必相等,故 =
c、最大速度 vmax = = 2πRf
5、質譜儀
速度選擇器&粒子圓周運動,和高考要求相同。
第二講 典型例題解析
一、磁場與安培力的計算
【例題1】兩根無限長的平行直導線a、b相距40cm,通過電流的大小都是3.0A,方向相反。試求位于兩根導線之間且在兩導線所在平面內的、與a導線相距10cm的P點的磁感強度。
【解說】這是一個關于畢薩定律的簡單應用。解題過程從略。
【答案】大小為8.0×10?6T ,方向在圖9-9中垂直紙面向外。
【例題2】半徑為R ,通有電流I的圓形線圈,放在磁感強度大小為B 、方向垂直線圈平面的勻強磁場中,求由于安培力而引起的線圈內張力。
【解說】本題有兩種解法。
方法一:隔離一小段弧,對應圓心角θ ,則弧長L = θR 。因為θ →
第七部分 熱學
熱學知識在奧賽中的要求不以深度見長,但知識點卻非常地多(考綱中羅列的知識點幾乎和整個力學——前五部分——的知識點數(shù)目相等)。而且,由于高考要求對熱學的要求逐年降低(本屆尤其低得“離譜”,連理想氣體狀態(tài)方程都沒有了),這就客觀上給奧賽培訓增加了負擔。因此,本部分只能采新授課的培訓模式,將知識點和例題講解及時地結合,爭取讓學員學一點,就領會一點、鞏固一點,然后再層疊式地往前推進。
一、分子動理論
1、物質是由大量分子組成的(注意分子體積和分子所占據(jù)空間的區(qū)別)
對于分子(單原子分子)間距的計算,氣體和液體可直接用,對固體,則與分子的空間排列(晶體的點陣)有關。
【例題1】如圖6-1所示,食鹽(NaCl)的晶體是由鈉離子(圖中的白色圓點表示)和氯離子(圖中的黑色圓點表示)組成的,離子鍵兩兩垂直且鍵長相等。已知食鹽的摩爾質量為58.5×10-3kg/mol,密度為2.2×103kg/m3,阿伏加德羅常數(shù)為6.0×1023mol-1,求食鹽晶體中兩個距離最近的鈉離子中心之間的距離。
【解說】題意所求即圖中任意一個小立方塊的變長(設為a)的倍,所以求a成為本題的焦點。
由于一摩爾的氯化鈉含有NA個氯化鈉分子,事實上也含有2NA個鈉離子(或氯離子),所以每個鈉離子占據(jù)空間為 v =
而由圖不難看出,一個離子占據(jù)的空間就是小立方體的體積a3 ,
即 a3 = = ,最后,鄰近鈉離子之間的距離l = a
【答案】3.97×10-10m 。
〖思考〗本題還有沒有其它思路?
〖答案〗每個離子都被八個小立方體均分,故一個小立方體含有×8個離子 = 分子,所以…(此法普遍適用于空間點陣比較復雜的晶體結構。)
2、物質內的分子永不停息地作無規(guī)則運動
固體分子在平衡位置附近做微小振動(振幅數(shù)量級為0.1),少數(shù)可以脫離平衡位置運動。液體分子的運動則可以用“長時間的定居(振動)和短時間的遷移”來概括,這是由于液體分子間距較固體大的結果。氣體分子基本“居無定所”,不停地遷移(常溫下,速率數(shù)量級為102m/s)。
無論是振動還是遷移,都具備兩個特點:a、偶然無序(雜亂無章)和統(tǒng)計有序(分子數(shù)比率和速率對應一定的規(guī)律——如麥克斯韋速率分布函數(shù),如圖6-2所示);b、劇烈程度和溫度相關。
氣體分子的三種速率。最可幾速率vP :f(v) = (其中ΔN表示v到v +Δv內分子數(shù),N表示分子總數(shù))極大時的速率,vP == ;平均速率:所有分子速率的算術平均值, ==;方均根速率:與分子平均動能密切相關的一個速率,==〔其中R為普適氣體恒量,R = 8.31J/(mol.K)。k為玻耳茲曼常量,k = = 1.38×10-23J/K 〕
【例題2】證明理想氣體的壓強P = n,其中n為分子數(shù)密度,為氣體分子平均動能。
【證明】氣體的壓強即單位面積容器壁所承受的分子的撞擊力,這里可以設理想氣體被封閉在一個邊長為a的立方體容器中,如圖6-3所示。
考查yoz平面的一個容器壁,P = ①
設想在Δt時間內,有Nx個分子(設質量為m)沿x方向以恒定的速率vx碰撞該容器壁,且碰后原速率彈回,則根據(jù)動量定理,容器壁承受的壓力
F == ②
在氣體的實際狀況中,如何尋求Nx和vx呢?
考查某一個分子的運動,設它的速度為v ,它沿x、y、z三個方向分解后,滿足
v2 = + +
分子運動雖然是雜亂無章的,但仍具有“偶然無序和統(tǒng)計有序”的規(guī)律,即
= + + = 3 ③
這就解決了vx的問題。另外,從速度的分解不難理解,每一個分子都有機會均等的碰撞3個容器壁的可能。設Δt = ,則
Nx = ·3N總 = na3 ④
注意,這里的是指有6個容器壁需要碰撞,而它們被碰的幾率是均等的。
結合①②③④式不難證明題設結論。
〖思考〗此題有沒有更簡便的處理方法?
〖答案〗有!懊睢彼蟹肿右韵嗤乃俾蕍沿+x、?x、+y、?y、+z、?z這6個方向運動(這樣造成的宏觀效果和“雜亂無章”地運動時是一樣的),則 Nx =N總 = na3 ;而且vx = v
所以,P = = ==nm = n
3、分子間存在相互作用力(注意分子斥力和氣體分子碰撞作用力的區(qū)別),而且引力和斥力同時存在,宏觀上感受到的是其合效果。
分子力是保守力,分子間距改變時,分子力做的功可以用分子勢能的變化表示,分子勢能EP隨分子間距的變化關系如圖6-4所示。
分子勢能和動能的總和稱為物體的內能。
二、熱現(xiàn)象和基本熱力學定律
1、平衡態(tài)、狀態(tài)參量
a、凡是與溫度有關的現(xiàn)象均稱為熱現(xiàn)象,熱學是研究熱現(xiàn)象的科學。熱學研究的對象都是有大量分子組成的宏觀物體,通稱為熱力學系統(tǒng)(簡稱系統(tǒng))。當系統(tǒng)的宏觀性質不再隨時間變化時,這樣的狀態(tài)稱為平衡態(tài)。
b、系統(tǒng)處于平衡態(tài)時,所有宏觀量都具有確定的值,這些確定的值稱為狀態(tài)參量(描述氣體的狀態(tài)參量就是P、V和T)。
c、熱力學第零定律(溫度存在定律):若兩個熱力學系統(tǒng)中的任何一個系統(tǒng)都和第三個熱力學系統(tǒng)處于熱平衡狀態(tài),那么,這兩個熱力學系統(tǒng)也必定處于熱平衡。這個定律反映出:處在同一熱平衡狀態(tài)的所有的熱力學系統(tǒng)都具有一個共同的宏觀特征,這一特征是由這些互為熱平衡系統(tǒng)的狀態(tài)所決定的一個數(shù)值相等的狀態(tài)函數(shù),這個狀態(tài)函數(shù)被定義為溫度。
2、溫度
a、溫度即物體的冷熱程度,溫度的數(shù)值表示法稱為溫標。典型的溫標有攝氏溫標t、華氏溫標F(F = t + 32)和熱力學溫標T(T = t + 273.15)。
b、(理想)氣體溫度的微觀解釋: = kT (i為分子的自由度 = 平動自由度t + 轉動自由度r + 振動自由度s 。對單原子分子i = 3 ,“剛性”〈忽略振動,s = 0,但r = 2〉雙原子分子i = 5 。對于三個或三個以上的多原子分子,i = 6 。能量按自由度是均分的),所以說溫度是物質分子平均動能的標志。
c、熱力學第三定律:熱力學零度不可能達到。(結合分子動理論的觀點2和溫度的微觀解釋很好理解。)
3、熱力學過程
a、熱傳遞。熱傳遞有三種方式:傳導(對長L、橫截面積S的柱體,Q = KSΔ
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com