11.高考資源網(wǎng)某等腰三角形的兩腰所在的直線方程是與.點(diǎn)(.0) 在等腰三角形的底邊上.底邊所在直線的斜率等于 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)    順次為一次函數(shù)圖象上高考資源網(wǎng)的點(diǎn),   點(diǎn)列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)    順次為x軸正半軸上高考資源網(wǎng)的點(diǎn),其中x1=a(0<a<1),    對(duì)于任意n∈N,點(diǎn)An、Bn、An+1構(gòu)成以

    Bn為頂點(diǎn)的等腰三角形。

⑴求{yn}的通項(xiàng)公式,且證明{yn}是等差數(shù)列;

⑵試判斷xn+2-xn是否為同一常數(shù)(不必證明),并求出數(shù)列{xn}的通項(xiàng)公式;

⑶在上高考資源網(wǎng)述等腰三角形AnBnAn+1中,是否存在直角三角形?若有,求出此時(shí)a值;

若不存在, 請(qǐng)說(shuō)明理由。

查看答案和解析>>

(本小題滿分12分)高考資源網(wǎng)某農(nóng)科所對(duì)冬季大棚內(nèi)晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了2010年1月1日至2010年1月5日的每天大棚內(nèi)晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日    期

1月1日

1月2日

1月3日

1月4日

1月5日

溫差(°C)

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

24

30

27

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)。高考資源網(wǎng)

(1)求選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;高考資源網(wǎng)

(2)若選取的是2010年1月1日與2010年1月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)2010年1月2日至2010年1月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;高考資源網(wǎng)

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?高考資源網(wǎng)

(參考數(shù)據(jù):;;;;)

查看答案和解析>>

(16分)高考資已知某食品廠需要定期購(gòu)買食品配料,該廠每天需要食品配料200千克,配料的價(jià)格為元/千克,每次購(gòu)買配料需支付運(yùn)費(fèi)236元.每次購(gòu)買來(lái)的配料還需支付保管費(fèi)用,其標(biāo)準(zhǔn)如下: 7天以內(nèi)(含7天),無(wú)論重量多少,均按10元/天支付;超出7天以外的天數(shù),根據(jù)實(shí)際剩余配料的重量,以每天0.03元/千克支付.高考資源網(wǎng)

(Ⅰ)當(dāng)9天購(gòu)買一次配料時(shí),求該廠用于配料的保管費(fèi)用P是多少元?高考資源網(wǎng)

  (Ⅱ)設(shè)該廠天購(gòu)買一次配料,求該廠在這天中用于配料的總費(fèi)用(元)關(guān)于的函數(shù)關(guān)系式,并求該廠多少天購(gòu)買一次配料才能使平均每天支付的費(fèi)用最少?高  

查看答案和解析>>

(本小題滿分13分)網(wǎng)

某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日    期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差(°C)

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)。高考資源網(wǎng)

(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;高考資源網(wǎng)

(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;高考資源網(wǎng)

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?高考資源網(wǎng)

查看答案和解析>>

某工廠生產(chǎn)A.B.C三種不同型號(hào)的產(chǎn)品,產(chǎn)品的數(shù)量之比依次為3:4:7,現(xiàn)在用分層抽樣的方法抽出容量為n的樣本,樣本中A型產(chǎn)品有15件,那么樣本容量n為 (    )高考資源網(wǎng)

A.50         B.60         C.70           D.80

 

查看答案和解析>>

 

一、

1.C      2.A      3.D      4.C      5.A      6.B       7.A      8.C      9.D      10.C

11.D    12.B

1~5略

6.

7.解:

      

      

其展開式中含的項(xiàng)是:,系數(shù)等于

8.解:根據(jù)題意:

9.解:,橢圓離心率為,

10.解:依腰意作出圖形.取中點(diǎn),連接,則,不妨設(shè)四面體棱長(zhǎng)為2,則是等腰三角形,必是銳角,就是所成的角,

11.解:已知兩腰所在直線斜率為1,,設(shè)底邊所在直線斜率為,已知底角相等,由到角公式得:

       ,解得

       由于等腰三角底邊過(guò)點(diǎn)(,0)則只能取

12.解:如圖,正四面體中,

      

中心,連,此四面體內(nèi)切球與外接球具有共同球心必在上,并且等于內(nèi)切球半徑,等于外接球半徑.記面積為,則

,從而

二、

13..解:,共線

14..解:,曲線在(1,0)處的切線與直線垂直,則,的傾角是

15.曲線     ①,化作標(biāo)準(zhǔn)形式為,表示橢圓,由于對(duì)稱性.取焦點(diǎn),過(guò)且傾角是135°的弦所在直線方程為:,即②,聯(lián)立式①與式②.消去y,得:,由弦長(zhǎng)公式得:

16.充要條件①:底面是正三角形,頂點(diǎn)在底面的射影恰是底面的中心.

充要條件②:底面是正三角形.且三條側(cè)棱長(zhǎng)相等,

充要條件③:底面是正三角形,且三個(gè)側(cè)面與底面所成角相等.

再如:底面是正三角形.且三條側(cè)棱與底面所成角相等;三條側(cè)棱長(zhǎng)相等,且三個(gè)側(cè)面與底面所成角相等;三個(gè)側(cè)面與底面所成角相等,三個(gè)側(cè)面兩兩所成二面角相等.

三、

17.解:,則,,.由正弦定理得

       ,

      

      

18.(1)證:已知是正三棱柱,取中點(diǎn)中點(diǎn),連,,則、、兩兩垂直,以、、軸建立空間直角坐標(biāo)系,又已知

,,則,又因相交,故

(2)解:由(1)知,是面的一個(gè)法向量.

             

,設(shè)是面的一個(gè)法向量,則①,②,取,聯(lián)立式①、②解得,則

              二面角是銳二面角,記其大小為.則

              ,

二面角的大小,亦可用傳統(tǒng)方法解(略).

19.解:已知各投保學(xué)生是否出險(xiǎn)相互獨(dú)立,且每個(gè)投保學(xué)生在一年內(nèi)出險(xiǎn)的概率都是,記投保的5000個(gè)學(xué)生中出險(xiǎn)的人數(shù)為,則(5000,0.004)即服從二項(xiàng)分布.

(1)記“保險(xiǎn)公司在學(xué)平險(xiǎn)險(xiǎn)種中一年內(nèi)支付賠償金至少5000元”為事件A,則

             

             

(2)該保險(xiǎn)公司學(xué)平險(xiǎn)除種總收入為元=25萬(wàn)元,支出成本8萬(wàn)元,支付賠償金5000元=0.5萬(wàn)元,盈利萬(wàn)元.

~知,

進(jìn)而萬(wàn)元.

故該保險(xiǎn)公司在學(xué)平險(xiǎn)險(xiǎn)種上盈利的期望是7萬(wàn)元.

20.解(1):由,即

              ,而

由表可知,上分別是增函數(shù),在上分別是減函數(shù).

.   

(2)時(shí),等價(jià)于,記,

,因,

上是減函數(shù),,故

當(dāng)時(shí),就是,顯然成立,綜上可得的取值范圍是:

22.解:(1)由條件可知橢圓的方程是:

             

                ①,直線的方程是            ②,

聯(lián)立式①、②消去并整理得,由此出發(fā)時(shí),是等比數(shù)列,

(2)由(1)可知,.當(dāng)時(shí),

      

      

       是遞減數(shù)列

       對(duì)恒成立

       ,時(shí),是遞減數(shù)列.

21.解(1):,由解得函數(shù)定義域呈

              ,由解得,列表如下:

0

0

極大

極小

              解得,進(jìn)而求得中點(diǎn)

              己知在直線上,則

       (2)

設(shè),則,點(diǎn)到直線的距離

,由于直線與線段相交于,則,則

,則

其次,,同理求得的中離:,

設(shè),即,由

,

時(shí),

,當(dāng)時(shí),.注意到,由對(duì)稱性,時(shí)仍有

,進(jìn)而

故四邊形的面積:

當(dāng)時(shí),

 

 


同步練習(xí)冊(cè)答案