21. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數的圖象經過三點.

(1)求函數的解析式(2)求函數在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數列{an}中, 

   (Ⅰ)求數列{an}的通項公式an;

   (Ⅱ)設數列{an}的前n項和為Sn,證明:

   (Ⅲ)設,證明:對任意的正整數n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數,其中a為常數.

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數η的概率分布和數學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

 

一、

1.C      2.A      3.D      4.C      5.A      6.B       7.A      8.C      9.D      10.C

11.D    12.B

1~5略

6.

7.解:

      

      

其展開式中含的項是:,系數等于

8.解:根據題意:

9.解:,橢圓離心率為,

10.解:依腰意作出圖形.取中點,連接,則,不妨設四面體棱長為2,則是等腰三角形,必是銳角,就是所成的角,

11.解:已知兩腰所在直線斜率為1,,設底邊所在直線斜率為,已知底角相等,由到角公式得:

       ,解得

       由于等腰三角底邊過點(,0)則只能取

12.解:如圖,正四面體中,

      

中心,連,此四面體內切球與外接球具有共同球心必在上,并且等于內切球半徑,等于外接球半徑.記面積為,則

,從而

二、

13..解:共線

14..解:,曲線在(1,0)處的切線與直線垂直,則,的傾角是

15.曲線     ①,化作標準形式為,表示橢圓,由于對稱性.取焦點,過且傾角是135°的弦所在直線方程為:,即②,聯(lián)立式①與式②.消去y,得:,由弦長公式得:

16.充要條件①:底面是正三角形,頂點在底面的射影恰是底面的中心.

充要條件②:底面是正三角形.且三條側棱長相等,

充要條件③:底面是正三角形,且三個側面與底面所成角相等.

再如:底面是正三角形.且三條側棱與底面所成角相等;三條側棱長相等,且三個側面與底面所成角相等;三個側面與底面所成角相等,三個側面兩兩所成二面角相等.

三、

17.解:,則,.由正弦定理得

       ,

      

      

18.(1)證:已知是正三棱柱,取中點,中點,連,則、、兩兩垂直,以、、、、軸建立空間直角坐標系,又已知,

,,則,又因相交,故

(2)解:由(1)知,是面的一個法向量.

             

,設是面的一個法向量,則①,②,取,聯(lián)立式①、②解得,則

              二面角是銳二面角,記其大小為.則

              ,

二面角的大小,亦可用傳統(tǒng)方法解(略).

19.解:已知各投保學生是否出險相互獨立,且每個投保學生在一年內出險的概率都是,記投保的5000個學生中出險的人數為,則(5000,0.004)即服從二項分布.

(1)記“保險公司在學平險險種中一年內支付賠償金至少5000元”為事件A,則

              ,

             

(2)該保險公司學平險除種總收入為元=25萬元,支出成本8萬元,支付賠償金5000元=0.5萬元,盈利萬元.

~知,,

進而萬元.

故該保險公司在學平險險種上盈利的期望是7萬元.

20.解(1):由,即,

              ,而

由表可知,上分別是增函數,在上分別是減函數.

.   

(2)時,等價于,記

,因,

上是減函數,,故

時,就是,顯然成立,綜上可得的取值范圍是:

22.解:(1)由條件可知橢圓的方程是:

             

                ①,直線的方程是            ②,

聯(lián)立式①、②消去并整理得,由此出發(fā)時,是等比數列,

(2)由(1)可知,.當時,

      

       ,

       是遞減數列

       對恒成立

       ,時,是遞減數列.

21.解(1):,由解得函數定義域呈

              ,由解得,列表如下:

0

0

極大

極小

              解得,進而求得中點

              己知在直線上,則

       (2)

,則,點到直線的距離

,由于直線與線段相交于,則,則

,則

其次,,同理求得的中離:,

,即,由

時,

,當時,.注意到,由對稱性,時仍有

,進而

故四邊形的面積:

,

時,

 

 


同步練習冊答案