(3)在平面內(nèi).設點是(2)題中的曲線在直角梯形內(nèi)部的一段曲線上的動點.其中為曲線和的交點. 以為圓心.為半徑的圓分別與梯形的邊.交于.兩點. 當點在曲線段上運動時.試提出一個研究有關四面體的問題(如體積.線面.面面關系等)并嘗試解決. 查看更多

 

題目列表(包括答案和解析)

給出以下5個命題:
①曲線x2-(y-1)2=1按平移可得曲線(x+1)2-(y-3)2=1;
②設A、B為兩個定點,n為常數(shù),,則動點P的軌跡為雙曲線;
③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
④A、B是平面內(nèi)兩定點,平面內(nèi)一動點P滿足向量夾角為銳角θ,且滿足 ,則點P的軌跡是圓(除去與直線AB的交點);
⑤已知正四面體A-BCD,動點P在△ABC內(nèi),且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
其中所有真命題的序號為   

查看答案和解析>>

(本小題滿分14分)

已知曲線所圍成的封閉圖形的面積為,曲線的內(nèi)切圓半徑為.記為以曲線與坐標軸的交點為頂點的橢圓.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設是過橢圓中心的任意弦,是線段的垂直平分線.上異于橢圓中心的點.

(1)若為坐標原點),當點在橢圓上運動時,求點的軌跡方程;

(2)若與橢圓的交點,求的面積的最小值.

查看答案和解析>>

(08年山東卷文)(本小題滿分14分)

已知曲線所圍成的封閉圖形的面積為,曲線的內(nèi)切圓半徑為.記為以曲線與坐標軸的交點為頂點的橢圓.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設是過橢圓中心的任意弦,是線段的垂直平分線.上異于橢圓中心的點.

(1)若為坐標原點),當點在橢圓上運動時,求點的軌跡方程;

(2)若與橢圓的交點,求的面積的最小值.

查看答案和解析>>

選作題,本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.(幾何證明選講)
如圖,AB是半圓的直徑,C是AB延長線上一點,CD切半圓于點D,CD=2,DE⊥AB,垂足為E,且E是OB的中點,求BC的長.
B.(矩陣與變換)
已知矩陣
12
2a
的屬于特征值b的一個特征向量為
1
1
,求實數(shù)a、b的值.
C.(極坐標與參數(shù)方程)
在平面直角坐標系xOy中,已知點A(1,-2)在曲線
x=2pt2
y=2pt
(t為參數(shù),p為正常數(shù)),求p的值.
D.(不等式選講)
設a1,a2,a3均為正數(shù),且a1+a2+a3=1,求證:
1
a1
+
1
a2
+
1
a3
≥9

查看答案和解析>>

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評分,解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1
(2)求A的特征值和特征向量.
C.[選修4-4:坐標系與參數(shù)方程]
已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設a,b,c均為正實數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

一、填空題(每題5分,理科總分55分、文科總分60分):

1. ;      2. 理:2;文:;      3. 理:1.885;文:2;

4. 理:;文:1.885;   5. 理:;文:4;   6. 理:;文:

7. 理:;文:;     8. 理:;文:6;    9. 理:;文:;

10. 理:1; 文:;    11. 理:;文:;     12. 文:;

二、選擇題(每題4分,總分16分):

題號

理12;文13

理13;文14

理:14;文:15

理15;文:16

答案

A

C

B

C

 

三、解答題:

16.(理,滿分12分)

解:因為拋物線的焦點的坐標為,設,

由條件,則直線的方程為

代入拋物線方程,可得,則.

于是,.

 

…2

 

 

…4

 

…8

 

 

…12

17.(文,滿分12分)

解:因為,所以由條件可得,.

即數(shù)列是公比的等比數(shù)列.

,

所以,.

 

 

 

…4

 

…6

 

 

…8

 

…12

(理)17.(文)18. (滿分14分)

解:因為

所以,

,

又由,即

時,;當時,.

所以,集合.

 

 

 

…3

 

 

…7

 

 

 

…11

 

 

 

 

 

 

…14

18.(理,滿分15分,第1小題6分,第2小題9分)

解:(1)當時,

 

,所以.

(2)證:由數(shù)學歸納法

(i)當時,易知,為奇數(shù);

(ii)假設當時,,其中為奇數(shù);

則當時,

         

所以,又、,所以是偶數(shù),

而由歸納假設知是奇數(shù),故也是奇數(shù).

綜上(i)、(ii)可知,的值一定是奇數(shù).

證法二:因為

為奇數(shù)時,

則當時,是奇數(shù);當時,

因為其中中必能被2整除,所以為偶數(shù),

于是,必為奇數(shù);

為偶數(shù)時,

其中均能被2整除,于是必為奇數(shù).

綜上可知,各項均為奇數(shù).

 

 

…3

 

 

 

 

 

 

…6

 

 

 

 

…8

 

 

 

 

…10

 

 

 

…14

 

…15

 

 

 

 

 

 

 

 

…10

 

 

 

 

…14

 

…15

19. (文,滿分14分)

解:如圖,設中點為,聯(lián)結、.

由題意,,,所以為等邊三角形,

,且.

,

所以.

而圓錐體的底面圓面積為,

所以圓錐體體積.

 

 

 

 

…3

 

 

 

…8

 

…10

 

…14

(理)19. (文)20. (滿分16分,第1小題4分,第2小題6分,第3小題6分)

解:(1)由題意,當之間的距離為1米時,應位于上方,

且此時邊上的高為0.5米.

又因為米,可得米.

所以,平方米,

即三角通風窗的通風面積為平方米.

(2)1如圖(1)所示,當在矩形區(qū)域滑動,即時,

的面積;

2如圖(2)所示,當在半圓形區(qū)域滑動,即時,

,故可得的面積

 

綜合可得:

(3)1在矩形區(qū)域滑動時,在區(qū)間上單調(diào)遞減,

則有

2在半圓形區(qū)域滑動時,

,

等號成立,.

因而當(米)時,每個三角通風窗得到最大通風面積,最大面積為(平方米).

 

 

 

 

…2

 

 

 

 

…4

 

 

 

 

 

 

…6

 

 

 

 

 

 

 

 

 

 

 

 

 

…9

 

 

 

 

 

…10

 

 

 

 

 

…12

 

 

 

 

 

 

…15

 

 

 

…16

21(文,滿分18分,第1小題5分,第2小題6分,第3小題7分)

解:(1)設右焦點坐標為).

因為雙曲線C為等軸雙曲線,所以其漸近線必為

由對稱性可知,右焦點到兩條漸近線距離相等,且.

于是可知,為等腰直角三角形,則由

又由等軸雙曲線中,.

即,等軸雙曲線的方程為.

(2)設、為雙曲線直線的兩個交點.

因為,直線的方向向量為,直線的方程為

.

代入雙曲線的方程,可得,

于是有

          .

(3)假設存在定點,使為常數(shù),其中,為直線與雙曲線的兩個交點的坐標.

   ①當直線軸不垂直時,設直線的方程為

代入,可得.

   由題意可知,,則有

于是,

要使是與無關的常數(shù),當且僅當,此時.

 ②當直線軸垂直時,可得點,

 若,亦為常數(shù).

綜上可知,在軸上存在定點,使為常數(shù).

 

 

 

 

 

 

…3

 

 

 

…5

 

 

 

 

 

 

…7

 

 

 

…9

 

 

 

 

 

…11

 

 

 

 

 

 

 

 

…13

 

 

 

 

 

 

 

 

 

 

 

…16

 

 

…17

 

…18

 

20(理,滿分22分,第1小題4分,第2小題6分,第3小題12分)

解:(1)解法一:由題意,四邊形是直角梯形,且,

所成的角即為.

因為,又平面,

所以平面,則有.

    因為,

所以,則,

即異面直線所成角的大小為.

解法二:如圖,以為原點,直線軸、直線軸、直線軸,

建立空間直角坐標系.

于是有、,則有,又

則異面直線所成角滿足,

    所以,異面直線所成角的大小為.

(2)解法一:由條件,過,垂足為,聯(lián)結.

于是有,故所成角即為.

在平面中,以為原點,直線軸,直線軸,建立平面直角坐標系. 設動點

則有

平面

同步練習冊答案