19. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

查看答案和解析>>

一、選擇題(每小題5分,共60分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

B

B

C

C

D

D

D

A

A

 

二、填空題(每小題5分,共20分)

13.         14.       15. 1            16.

三、簡(jiǎn)答題

17.解:依題記“甲答對(duì)一題”為事件A ;“乙答對(duì)一題”為事件B

2分

∴ξ的分布列:

ξ

0

1

2

P

                                                          8分

                              10分

18.解:當(dāng)時(shí),原式                              3分

當(dāng)時(shí),有                             

∴原式=                           7分

當(dāng)時(shí),

∴原式                                                   11分

綜上所述:                              12分

19.解:設(shè)切點(diǎn)(),                                              3分

∵切線與直線平行

          或                        10分

∴切點(diǎn)坐標(biāo)(1,-8)(-1,-12)

∴切線方程:

即:                                               12分

21.解:設(shè)底面一邊長(zhǎng)為,則另一邊長(zhǎng)

∴高為                                    3分

由:            ∴

∵體積

                                       6分

(舍去)

只有一個(gè)極值點(diǎn)

,此時(shí)高1.2m,最大容積為         11分

答:高為1.2m 時(shí)體積最大,最大值為1.8              12分

22.解:假設(shè)存在

當(dāng)時(shí),由即:

當(dāng)時(shí),   ∴

猜想:

證明:1. 當(dāng)時(shí),已證

         2. 假設(shè)時(shí)結(jié)論成立

      

即為時(shí)結(jié)論也成立

由(1)(2)可知,對(duì)大于1的自然數(shù)n,存在,使成立                                                             12分


同步練習(xí)冊(cè)答案