題目列表(包括答案和解析)
已知函數(shù),則不等式的解集為( )
A. B.
C. D.
已知函數(shù),則不等式的解集為( )
A. B. C. D.
已知函數(shù),則不等式的解集為 ( )
A. B. C. D.
已知函數(shù),則不等式的解集為( )
A. B. C. D.
已知函數(shù),則不等式的解集為( )
A. B. C. D.
2008.9
一、(每題5分,共60分)
1.B 2.B 3.B 4.C 5.C 6.A 7.D 8.B 9.A 10.C 11.D 12.B
二、(每題5分,共20分)
13.若則 14.
15.15人 16.20
三、17.(10分)
④當時,有
綜上所述,m 的取值范圍為
……………………………………………………………(10分)
18.(12分)
解:求導得:,由于的圖象與直線
相切于點(1,-11)所以有 即:
……………………………………………………………………………(8分)
解得 ………………………………………………………(10分)
所以………………………………………………(12分)
19.(12分)
解:(1)當時,不等式化為:即…………………(2分)(2)當時,原不等式可化為:
當時,有∵∴…………(4分)
當時,原不等式可化為:
①當即時有
②當即時
③當即時………………………………………(10分)
20.(12分)
解:設剪去的小正方形邊長為x┩,則鐵盒的底面邊長分別為:
┩,┩,所以有 得…………(2分)
設容積為U,則…………(4分)
則令得或(舍去)………(8分)當時, 當時,
∴當時,取得極大值,即的最大值為18………………(11分)
所以剪去的小正方形邊長為1┩時,容積最大,最大容積為18
……………………………………………………………………(12分)
21.(12分)
解:函數(shù)的導數(shù)令得或………………………………………………………………(2分)
當時,即時,函數(shù)在上為增函數(shù),不合題意。
……………………………………………………………(4分)
當時,即時,函數(shù)在上為增函數(shù),在內為減函數(shù),在上為增函數(shù)……………………………………(8分)
依題應有當時;當時所以:,解得,因此所求范圍為………………(12分)
22.(12分)
(Ⅰ)設,則對于都有
等價于對于恒成立。………………(2分)
∴只需在上的最小值即可
∴與的關系如下表:
-3
(-3,-1)
-1
(-1,2)
2
(2,3)
3
+
0
-
0
+
-45+k
增
7+k
減
-20+k
增
-9+k
于是的最小值為,所以,即為所求…………………………………………………………………………(6分)
(Ⅱ)對任意都有“”
等價于“的最大值小于或等于在的最小值”……………………………………………………………………(8分)
下面求在上的最小值
列表
-3
(-3,-1)
-1
3
+
0
-
0
+
-21
增
-1
減
增
111
∴在上的最小值為-21,又在內最大值為于是∴為所求。
………………………………………………………………(12分)
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com