題目列表(包括答案和解析)
設(shè)函數(shù)
(1)當(dāng)時(shí),求曲線(xiàn)處的切線(xiàn)方程;
(2)當(dāng)時(shí),求的極大值和極小值;
(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線(xiàn)方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說(shuō)明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當(dāng)……2分
∴
即為所求切線(xiàn)方程!4分
(2)當(dāng)
令………………6分
∴遞減,在(3,+)遞增
∴的極大值為…………8分
(3)
①若上單調(diào)遞增!酀M(mǎn)足要求!10分
②若
∵恒成立,
恒成立,即a>0……………11分
時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是
已知函數(shù)在處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
【解析】第一問(wèn)中利用導(dǎo)數(shù)
又f(x)在x=1處取得極值2,所以,
所以
第二問(wèn)中,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得
解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分
⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得, …………9分
當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有
得 …………12分
.綜上所述,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是或
對(duì)于下列命題:
①函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng);
②的單調(diào)增區(qū)間為;
③已知點(diǎn)N、P在△ABC所在平面內(nèi),且,則N、P依次是△ABC的重心、垂心;
④已知向量,且,則三點(diǎn)A,B,D一定共線(xiàn).
以上命題成立的序號(hào)是________.
.對(duì)于下列命題:
① 函數(shù)的圖象關(guān)于點(diǎn) 對(duì)稱(chēng);
② 的單調(diào)增區(qū)間為;
③ 已知點(diǎn)N、P在所在平面內(nèi),且,則N、P依次是的重心、垂心;
④ 已知向量,且,則三點(diǎn)一定共線(xiàn)。
以上命題成立的序號(hào)是__________________.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com