題目列表(包括答案和解析)
已知函數(shù)其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍;
(III)當a=1時,設函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值。
【考點定位】本小題主要考查導數(shù)的運算,利用導數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點,函數(shù)的最值等基礎知識.考查函數(shù)思想、分類討論思想.考查綜合分析和解決問題的能力.
已知函數(shù)的圖象過點(-1,-6),且函數(shù) 的圖象關(guān)于y軸對稱.
(1)求、的值及函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在(-1,1)上單調(diào)遞減,求實數(shù)的取值范圍。
【解析】本試題主要考查了導數(shù)在函數(shù)研究中的應用。利用導數(shù)能求解函數(shù)的單調(diào)性和奇偶性問題,以及能根據(jù)函數(shù)單調(diào)區(qū)間,逆向求解參數(shù)的取值范圍的求解問題。要利用導數(shù)恒小于等于零來解得 。
已知函數(shù)的圖象過點(-1,-6),且函數(shù) 的圖象關(guān)于y軸對稱.
(1)求、的值及函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在(-1,1)上單調(diào)遞減,求實數(shù)的取值范圍。
【解析】本試題主要考查了導數(shù)在函數(shù)研究中的應用。利用導數(shù)能求解函數(shù)的單調(diào)性和奇偶性問題,以及能根據(jù)函數(shù)單調(diào)區(qū)間,逆向求解參數(shù)的取值范圍的求解問題。要利用導數(shù)恒小于等于零來解得 。
已知函數(shù)的圖象過點(-1,-6),且函數(shù) 的圖象關(guān)于y軸對稱.
(1)求、的值及函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在(-1,1)上單調(diào)遞減,求實數(shù)的取值范圍。
【解析】本試題主要考查了導數(shù)在函數(shù)研究中的應用。利用導數(shù)能求解函數(shù)的單調(diào)性和奇偶性問題,以及能根據(jù)函數(shù)單調(diào)區(qū)間,逆向求解參數(shù)的取值范圍的求解問題。要利用導數(shù)恒小于等于零來解得 。
已知函數(shù).
(1)求在區(qū)間上的最大值;
(2)若函數(shù)在區(qū)間上存在遞減區(qū)間,求實數(shù)m的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用,求解函數(shù)的最值。第一問中,利用導數(shù)求解函數(shù)的最值,首先求解導數(shù),然后利用極值和端點值比較大小,得到結(jié)論。第二問中,我們利用函數(shù)在上存在遞減區(qū)間,即在上有解,即,即可,可得到。
解:(1),
令,解得 ……………3分
,在上為增函數(shù),在上為減函數(shù),
. …………6分
(2)
在上存在遞減區(qū)間,在上有解,……9分
在上有解, ,
所以,實數(shù)的取值范圍為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com