根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式,有p′(t)=1.05tln1.05. 4分 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分12分)

已知函數(shù);

(1)求;         (2)求的最大值與最小值.

【解析】第一問(wèn)利用導(dǎo)數(shù)的運(yùn)算法則,冪函數(shù)的導(dǎo)數(shù)公式,可得。

第二問(wèn)中,利用第一問(wèn)的導(dǎo)數(shù),令導(dǎo)數(shù)為零,得到

然后結(jié)合導(dǎo)數(shù),函數(shù)的關(guān)系判定函數(shù)的單調(diào)性,求解最值即可。

 

查看答案和解析>>

利用公式(lnx)′=,求證:對(duì)數(shù)函數(shù)的導(dǎo)數(shù)公式(logax)′=logae.

查看答案和解析>>

對(duì)于半徑為r的圓,由(πr2)'=2πr可以得到結(jié)論:圓的面積關(guān)于半徑的函數(shù)的導(dǎo)數(shù)等于圓的周長(zhǎng)關(guān)于半徑的函數(shù),通過(guò)類(lèi)比可以得到:對(duì)于半徑為r 的球,由
類(lèi)比推理
類(lèi)比推理
,可以得到結(jié)論
球的體積函數(shù)的導(dǎo)數(shù)等于球的表面積函數(shù)
球的體積函數(shù)的導(dǎo)數(shù)等于球的表面積函數(shù)
(參考公式:球的體積公式V=
43
πr2

查看答案和解析>>

已知函數(shù)f(x)=-x3+3x2+9xa.

(1)求f(x)的單調(diào)遞減區(qū)間;

(2)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.

思路 本題考查多項(xiàng)式的導(dǎo)數(shù)公式及運(yùn)用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和函數(shù)的最值,題目中需注意應(yīng)先比較f(2)和f(-2)的大小,然后判定哪個(gè)是最大值從而求出a.

查看答案和解析>>

記函數(shù)的導(dǎo)數(shù)為的導(dǎo)數(shù)為的導(dǎo)數(shù)為。若可進(jìn)行次求導(dǎo),則均可近似表示為:

若取,根據(jù)這個(gè)結(jié)論,則可近似估計(jì)自然對(duì)數(shù)的底數(shù)_____(用分?jǐn)?shù)表示).

 

查看答案和解析>>


同步練習(xí)冊(cè)答案