21. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

2009年推出一種新型家用轎車,購買時費用為14.4萬元,每年應交付保險費、養(yǎng)路費及汽油費共0.7萬元,汽車的維修費為:第一年無維修費用,第二年為0.2萬元,從第三年起,每年的維修費均比上一年增加0.2萬元. w.w.w.k.s.5.u.c.o.m               

   (I)設該輛轎車使用n年的總費用(包括購買費用、保險費、養(yǎng)路費、汽油費及維修費)為f(n),求f(n)的表達式;w.w.w.k.s.5.u.c.o.m               

   (II)這種汽車使用多少報廢最合算(即該車使用多少年,年平均費用最少)?

查看答案和解析>>

(本小題滿分12分)

某車間甲組有10名工人,其中有4名女工人;乙組有5名工人,其中有3名女工人,現(xiàn)采用分層抽樣方法(層內采用不放回簡單隨機抽樣)從甲、乙兩組中共抽取3名工人進行技術考核。

(I)求從甲、乙兩組各抽取的人數(shù);     

(II)求從甲組抽取的工人中恰有1名女工人的概率;

(III)記表示抽取的3名工人中男工人數(shù),求的分布列及數(shù)學期望。              

查看答案和解析>>

(本小題滿分12分)

在10件產品中,有3件一等品,4件二等品,3件三等品。從這10件產品中任取3件,求:

(I) 取出的3件產品中一等品件數(shù)X的分布列和數(shù)學期望;     

(II) 取出的3件產品中一等品件數(shù)多于二等品件數(shù)的概率。     

查看答案和解析>>

(本小題滿分13分)

    對于各項均為整數(shù)的數(shù)列,如果(=1,2,3,…)為完全平方數(shù),則稱數(shù)

具有“性質”。

    不論數(shù)列是否具有“性質”,如果存在與不是同一數(shù)列的,且

時滿足下面兩個條件:①的一個排列;②數(shù)列具有“性質”,則稱數(shù)列具有“變換性質”。

(I)設數(shù)列的前項和,證明數(shù)列具有“性質”;

(II)試判斷數(shù)列1,2,3,4,5和數(shù)列1,2,3,…,11是否具有“變換性質”,具有此性質的數(shù)列請寫出相應的數(shù)列,不具此性質的說明理由;

(III)對于有限項數(shù)列:1,2,3,…,,某人已經驗證當時,

數(shù)列具有“變換性質”,試證明:當”時,數(shù)也具有“變換性質”。

查看答案和解析>>

(本小題滿分14分)

已知直線l與橢圓(ab>0)相交于不同兩點A、B,,且,以M為焦點,以橢圓的右準線為相應準線的雙曲線與直線l相交于N(4,1). (I)求橢圓的離心率; (II)設雙曲線的離心率為,記,求的解析式,并求其定義域和值域.

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

答案

C

B

C

D

C

A

C

B

A

D

C

提示與分析:

1.,故選C。

2.易知p成立,m<3,q成立,2<m<,從而p成立成立,故選B。

3.選C

4.由已知得,得,故選D。

5.易知,故選C。

6.,作圖知選A。

7.選C。由題:。

8.設球半徑為R,由,由知,三棱錐頂點S愛底面ABC內的攝影D是△ABC的外心,又∠ACB=90°,∴D是AB的中點,點O到ABC的距離h=OD,設SA=SB=SC=AB=2,可得,或h=10(舍),故選B。

9.由題設易知M是PF的中點,設橢圓右焦點為,由知,=8,,又易知該橢圓的離心率,再由橢圓第二定義得,點P到橢圓左準線的距離,故選A。

10.由,∴故選D。

11.由題設知是周期為2的周期函數(shù),由時,,可作出再R上的簡圖,又是偶函數(shù),再作出簡圖,則可確定兩圖像的交點個數(shù),故選C。

二、填空題

12.112                       13.9                          14.32                         15.①②④

提示與分析:

12.令,再分別令得兩式,再相加可得,從而得知。

13.由題得:,得:,而可看作是單位圓上的點(m,n)到點(2,0)的距離,則易知,的最大值為9.

14.由題設知,又0<q<1則得,∴

15.如圖,①知直線BC與面所成的角即為∠,故①正確。

②易知四面體在四個側面的攝影圖形面積均最小,為正方形面積之半,故②正確

③點M到平面的距離,即為點到平面的距離。其等于,故③不正確。

④易知BM與所成的角,即為BM與所成的角,設∠易知,,即,故④正確。

三、解答題

16.(1)由題設知:

再由余弦定理得:

當且僅當時取等號,故所求B的取值范圍是                (3分)

(2)∵,∴,

∴0<b,當且僅當時,

                                                      (6分)

(3)由(1)(2)易知,當△ABC的面積S最大時,△ABC是邊長為2的正△,此時易知

在△AGM中,由正弦定理得:

在△AGN中,同理可得:

           (10分)

(或用降次公式化簡)

                                                 (12分)

17.解法一:

(1)由PB⊥面ABCD,CD⊥PD知CD⊥BD

在直角梯形ABCD中,AD⊥AB,AB=AD=3,

∴BD=,BC=6

取BC的中點F,連結AF,則AF∥CD,

∴PA與CD所成的角就是∠PAF   (4分)

連PF由題設易知AF=PF=PA=,

∴∠PAF=60°即為所求     (6分)

(2)連AC交BD于G,連EG,易知,

,∴PC∥EG,又EG面EBD,∴PC∥面EBD  (10分)

(3)∵PB⊥面ABCD,∴AD⊥PB,

又AD⊥AB,∴AD⊥面EAB

作AH⊥BE于H,連DH,則DH⊥BE,   (12分)

在△AEB中,易求得BE=,

△DAH中,

即所求二面角的大小為  (14分)

解法二:(1)如圖建立空間直角坐標系,設

則A(0,3,0),P(0,0,3)D(3,3,0),C(,0,0),=

,∴,

即:3(3-)+9=0         (2分)

,即異面直線PA與CD所成的交為60°            (6分)

(2)設平面BED的法向量為  ∵

,∴       (12分)

又由(1)知,∴,∴PC∥面EBD  (10分)

(3)由(2)知

又平面ABE的法向量,

故所求二面角的大小為                                 (14分)

18.(1)在第一環(huán)節(jié)中,乙選手從6道題目中任選3道至少有1道操作題的概率

                                                          (4分)

(2)在第二環(huán)節(jié)中,甲搶到的題目多于乙選手而不多于丙選手的情況有以下三種:

甲、乙、丙三位選手搶到的題目的個數(shù)分別為1,0,4;2,0,3;2,1,2,

故所求的概率

(8分)

(3)在第三個環(huán)節(jié)中,就每一次答題而言,丙選手得分是一個隨機變量,

若選A類題,其得分的期望是(分)

若選B類題,其得分的期望是(分)

若選C類題,其得分的期望是(分)

由于=,故丙應選B類得分的切望值更大。(12分)

19.(1)依題意可得:

                                                                 (4分)

(2)由

時,,則

,∴

即第次操作后溶液的濃度為                  (9分)

(3)由(2)可得:

由錯位相減法可求得:

故所求                     (13分)

20.(1)由<0,,∴

,∴

從而有                      (4分)

(2)由(1)可知,

,則

  得,∴

,解得

列表:

(0,1)

1

(1,+∞)

0

+

0

處有最小值0                  (8分)

(3)由易知時,

為減函數(shù),其最小值為1

上單增,其最大值為

依題意得:

              (14分)

21.(1)由題設及平面幾何知識得:,

∵動點P的軌跡是以A、B為交點的雙曲線右支,

故所求P點的軌跡方程為:  (4分)

(2)易知 直線恒過雙曲線焦點B(3,0)

設該直線與雙曲線右支相交于

由雙曲線第二定義知,

,則

,從而易知,僅當時,滿足

故所求  (8分)

(3)設,且p分有向線段所成的比為

,

又點在雙曲線上,∴

化簡得:

                               (11分)

上單減,在上單增,

,∴上單減,在上單增,∴

,∴

故所求的最小值為9,最大值為。   (14分)

                                                                                                                               天星教育網(www.tesoon.com) 版權所有

天星教育網(www.tesoon.com) 版權所有

天星教育網(www.tesoon.com) 版權所有

Tesoon.com

 天星版權

天?星om

 

      • 天?星om

        Tesoon.com

         天星版權

        天?星om

         


        同步練習冊答案