所以可得結(jié)果為. 查看更多

 

題目列表(包括答案和解析)

某雷達(dá)測速區(qū)規(guī)定:凡車速大于或等于70㎞/h的汽車視為“超速”,并將受到懲罰。如圖是某路段的一個(gè)檢測點(diǎn)對200輛汽車的車速進(jìn)行檢測所得的結(jié)果的頻率分布直方圖,則從圖中可以看出將被處罰的汽車大約有
[     ]
A.30輛  
B.40輛  
C.60輛  
D.80輛

查看答案和解析>>

給出下列命題:

    ①在研究身高和體重的關(guān)系時(shí),求得相關(guān)指數(shù)R2≈0.64,可以敘述為“身高解釋了64%的體重變化,而隨機(jī)誤差貢獻(xiàn)了剩余的36%”,所以身高對體重的效應(yīng)比隨機(jī)誤差的效應(yīng)大得多.

    ②合情推理的結(jié)論不一定正確,在演繹推理中,只要前提和推理形式是正確的,結(jié)論必定是正確的.

    ③在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越差.

    ④市政府調(diào)查江北水城市民收入與市民旅游欲望的關(guān)系時(shí),抽查了3000人。經(jīng)過計(jì)算發(fā)現(xiàn)K2=6.023,則,市政府有97.5%的把握認(rèn)為市民收入與旅游欲望有關(guān).其中正確命題的序號是____________.

查看答案和解析>>

課外研究題:將一塊圓心角為,半徑為20厘米的扇形鐵片裁成一塊矩形,請你設(shè)計(jì)裁法,使裁得矩形的面積最大?并說明理由.

教學(xué)建議:這是一個(gè)研究性學(xué)習(xí)內(nèi)容,可讓學(xué)生在課外兩人一組合作完成,寫成研究報(bào)告,在習(xí)題課上讓學(xué)生交流研究結(jié)果,老師可適當(dāng)進(jìn)行點(diǎn)評。

參考答案:這是一個(gè)如何下料的問題,一般有如圖(1)、圖(2)的兩種裁法:即讓矩形一邊在扇形的一條半徑上,或讓矩形一邊與弦平行。從圖形的特點(diǎn)來看,涉及到線段的長度和角度,將這些量放置在三角形中,通過解三角形求出矩形的邊長,再計(jì)算出兩種方案所得矩形的最大面積,加以比較,就可以得出問題的結(jié)論.

查看答案和解析>>

在復(fù)平面內(nèi), 是原點(diǎn),向量對應(yīng)的復(fù)數(shù)是=2+i。

(Ⅰ)如果點(diǎn)A關(guān)于實(shí)軸的對稱點(diǎn)為點(diǎn)B,求向量對應(yīng)的復(fù)數(shù);

(Ⅱ)復(fù)數(shù)對應(yīng)的點(diǎn)C,D。試判斷A、B、C、D四點(diǎn)是否在同一個(gè)圓上?并證明你的結(jié)論。

【解析】第一問中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二問中,由題意得,=(2,1)  ∴

同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,

∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上

(Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四點(diǎn)在同一個(gè)圓上。                              2分

證明:由題意得,=(2,1)  ∴

  同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,

∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上

 

查看答案和解析>>

已知有窮數(shù)列A:a1,a2,…,an,(n≥2),若數(shù)列A中各項(xiàng)都是集合{x|-1<x<1}的元素,則稱該數(shù)列為Γ數(shù)列。對于Γ數(shù)列A,定義如下操作過程T:從A中任取兩項(xiàng)ai,aj,將的值添在A的最后,然后刪除ai,aj,這樣得到一個(gè)n-1項(xiàng)的新數(shù)列A1(約定:一個(gè)數(shù)也視作數(shù)列)。若A1還是Γ數(shù)列,可繼續(xù)實(shí)施操作過程T,得到的新數(shù)列記作A2,…,如此經(jīng)過k次操作后得到的新數(shù)列記作Ak,
(Ⅰ)設(shè)A:0,,請寫出A1的所有可能的結(jié)果;
(Ⅱ)求證:對于一個(gè)n項(xiàng)的Γ數(shù)列A操作T總可以進(jìn)行n-1次;
(Ⅲ)設(shè)A:,求A9的可能結(jié)果,并說明理由.

查看答案和解析>>

1.解:由題意可知A=(-2,3),B=(0,4),∴=.

2.解:∵=3x2,∵在(a,a3)處切線為y-a3=3a2(x-a),令y=0,得切線與x軸交點(diǎn)(),切線與直線x=a交于(a,a3),∴曲線處的切線與x軸、直線所圍成的三角形的面積為S=,令S=,解得a=±1.

3.解:由已知得1-tanαtanβ=tanα-tanβ,∴tanα=.

4.解:=

5.解:4位乘客進(jìn)入4節(jié)車廂共有256種不同的可能,6位乘客進(jìn)入各節(jié)車廂的人數(shù)恰為0,1,2,3的方法共有,∴這6位乘客進(jìn)入各節(jié)車廂的人數(shù)恰好為0,1,2,3的概率為.

6.解:①菱形不可能,如果這個(gè)四邊形是菱形,這時(shí)菱形的一條對角線垂直拋物線的對稱軸,這時(shí)四邊形的必有一個(gè)頂點(diǎn)在拋物線的對稱軸上(非拋物線的頂點(diǎn)); ④平行四邊形,也不可能,因?yàn)閽佄锷纤膫(gè)點(diǎn)組成的四邊形最多有一組對邊平行.故連接拋物線上任意四點(diǎn)組成的四邊形可能是②③⑤.

7. 解:復(fù)數(shù)=

8. 解:。

9. 解:已知 ,,,∴ ,

=

=

10. 解:在數(shù)列中,若,∴ ,即{}是以為首項(xiàng),2為公比的等比數(shù)列,,所以該數(shù)列的通項(xiàng).

11.解:設(shè),函數(shù)有最大值,∵有最小值,∴ 0<a<1, 則不等式的解為,解得2<x<3,所以不等式的解集為.

12.解:已知變量滿足約束條件 在坐標(biāo)系

中畫出可行域,如圖為四邊形ABCD,其中A(3,1),,

目標(biāo)函數(shù)(其中)中的z表示斜率為-a的直線系中的

截距的大小,若僅在點(diǎn)處取得最大值,則斜率應(yīng)小于,即

,所以的取值范圍為(1,+∞)。

13.【答案】

【分析】

14.【答案】:7

【分析】:畫出可行域,當(dāng)直線過點(diǎn)(1,2)時(shí),

15.【答案】

【分析】恒成立,

恒成立,       

16.【答案】:18

【分析】是方程的兩根,故有:

         (舍)。

        

17.【答案】:25

【分析】:所有的選法數(shù)為,兩門都選的方法為。         故共有選法數(shù)為

18.【答案】

【分析】

         代入得:

         設(shè)

         又

        

19.解:, 

20.解:  點(diǎn)在x=0處連續(xù),

所以  故

21.解: 

22.解:  ,

23.解:設(shè)圓心,直線的斜率為, 弦AB的中點(diǎn)為的斜率為,,所以 由點(diǎn)斜式得

24. 解:則底面共,

,由分類計(jì)數(shù)原理得上底面共,由分步類計(jì)數(shù)原理得共有

25.解析:本小題主要考查三點(diǎn)共線問題。

      (舍負(fù)).

26.解析:本小題主要考查橢圓的第一定義的應(yīng)用。依題直線過橢圓的左焦點(diǎn),在 中,,又,∴

27.解析:本小題主要考查三角形中正弦定理的應(yīng)用。依題由正弦定理得:

,即,

28.解析:本小題主要考查球的內(nèi)接幾何體體積計(jì)算問題。其關(guān)鍵是找出

球心,從而確定球的半徑。由題意,三角形DAC,三角形DBC都

是直角三角形,且有公共斜邊。所以DC邊的中點(diǎn)就是球心(到

D、A、C、B四點(diǎn)距離相等),所以球的半徑就是線段DC長度的一半。

29.解析:本小題主要考查二次函數(shù)問題。對稱軸為下方圖像翻到軸上方.由區(qū)間[0,3]上的最大值為2,知解得檢驗(yàn)時(shí),

不符,而時(shí)滿足題意.

30.解析:本小題主要考查排列組合知識。依題先排除1和2的剩余4個(gè)元素有

種方案,再向這排好的4個(gè)元素中插入1和2捆綁的整體,有種插法,

∴不同的安排方案共有種。

31.解析:本小題主要考查線性規(guī)劃的相關(guān)知識。由恒成立知,當(dāng)時(shí),

恒成立,∴;同理,∴以,b為坐標(biāo)點(diǎn)

所形成的平面區(qū)域是一個(gè)正方形,所以面積為1.

32.解析:,所以,系數(shù)為.

33.解析:由,所以,表面積為.

34.解析:拋物線的焦點(diǎn)為,所以圓心坐標(biāo)為,,圓C的方程為.

35.解析:令,則

所以.

36.解析:

所以.

37.解析:由已知得,單調(diào)遞減,所以當(dāng)時(shí),

所以,因?yàn)橛星抑挥幸粋(gè)常數(shù)符合題意,所以,解得,所以的取值的集合為.

38.【解】:∵展開式中項(xiàng)為

  ∴所求系數(shù)為   故填

【點(diǎn)評】:此題重點(diǎn)考察二項(xiàng)展開式中指定項(xiàng)的系數(shù),以及組合思想;

【突破】:利用組合思想寫出項(xiàng),從而求出系數(shù);

39.【解】:如圖可知:過原心作直線的垂線,則長即為所求;

的圓心為,半徑為

 點(diǎn)到直線的距離為

  ∴      故上各點(diǎn)到的距離的最小值為

【點(diǎn)評】:此題重點(diǎn)考察圓的標(biāo)準(zhǔn)方程和點(diǎn)到直線的距離;

【突破】:數(shù)形結(jié)合,使用點(diǎn)到直線的距離距離公式。

40.【解】:如圖可知:∵

    ∴  ∴正四棱柱的體積等于

【點(diǎn)評】:此題重點(diǎn)考察線面角,解直角三角形,以及求正四面題的體積;

【突破】:數(shù)形結(jié)合,重視在立體幾何中解直角三角形,熟記有關(guān)公式。

41.【解】:∵等差數(shù)列的前項(xiàng)和為,且 

  即   ∴

  ∴,,

  ∴  故的最大值為,應(yīng)填

【點(diǎn)評】:此題重點(diǎn)考察等差數(shù)列的通項(xiàng)公式,前項(xiàng)和公式,以及不等式的變形求范圍;

【突破】:利用等差數(shù)列的前項(xiàng)和公式變形不等式,利用消元思想確定的范圍解答本題的關(guān)鍵;

42.解:

43.解:設(shè),即

是等邊三角形,,

中,

44.解:①,向量垂直

構(gòu)成等邊三角形,的夾角應(yīng)為

所以真命題只有②。

45.解:分兩類:第一棒是丙有,第一棒是甲、乙中一人有

因此共有方案

46.【答案】  2

【解析】則向量與向量共線

47.【答案】 2

【解析】,∴切線的斜率,所以由

48.【答案】

【解析】設(shè)A(,)B()由,,();∴由拋物線的定義知

【考點(diǎn)】直線與拋物線的位置關(guān)系,拋物線定義的應(yīng)用

49.【答案】兩組相對側(cè)面分別平行;一組相對側(cè)面平行且全等;對角線交于一點(diǎn);底面是平行四邊形.

注:上面給出了四個(gè)充要條件.如果考生寫出其他正確答案,同樣給分.

50.答案:

解析:本小題主要考查求反函數(shù)基本知識。求解過程要注意依據(jù)函數(shù)的定義域進(jìn)行分段求解以及反函數(shù)的定義域問題。

51.答案:

解析:本小題主要考查立體幾何球面距離及點(diǎn)到面的距離。設(shè)球的半徑為,則,∴設(shè)、兩點(diǎn)對球心張角為,則,∴,∴,∴所在平面的小圓的直徑,∴,設(shè)所在平面的小圓圓心為,則球心到平面ABC的距離為

52.答案:5

解析:本小題主要考查二項(xiàng)式定理中求特定項(xiàng)問題。依題中,只有時(shí),其展開式既不出現(xiàn)常數(shù)項(xiàng),也不會出現(xiàn)與、乘積為常數(shù)的項(xiàng)。

53.答案:

解析:本小題主要針對考查三角函數(shù)圖像對稱性及周期性。依題在區(qū)間有最小值,無最大值,∴區(qū)間的一個(gè)半周期的子區(qū)間,且知的圖像關(guān)于對稱,∴,取

54.解:由已知得,則

55.解:

56.

57.解:真命題的代號是:   BD  。易知所盛水的容積為容器容量的一半,故D正確,于是A錯(cuò)誤;水平放置時(shí)由容器形狀的對稱性知水面經(jīng)過點(diǎn)P,故B正確;C的錯(cuò)誤可由圖1中容器位置向右邊傾斜一些可推知點(diǎn)P將露出水面。

58.【答案】

【解析】

59.【答案】

【解析】

60.【答案】(-1,2)

【解析】由函數(shù)的圖象過點(diǎn)(1,2)得: 即函數(shù)過點(diǎn) 則其反函數(shù)過點(diǎn)所以函數(shù)的圖象一定過點(diǎn)

61.【答案】 ,

【解析】(1)當(dāng)a>0時(shí),由,所以的定義域是;

        (2) 當(dāng)a>1時(shí),由題意知;當(dāng)0<a<1時(shí),為增函數(shù),不合;

           當(dāng)a<0時(shí),在區(qū)間上是減函數(shù).故填.

62.【答案】   ,  6

【解析】第二空可分:

①當(dāng) 時(shí), ;

②當(dāng) 時(shí), ;

③當(dāng)時(shí), ;

所以 

也可用特殊值法或ij同時(shí)出現(xiàn)6次.

63.解:由余弦定理,原式

64.解:由題意知所以

,所以解集為。

65.解:依題意,所以

66.解:由觀察可知當(dāng),每一個(gè)式子的第三項(xiàng)的系數(shù)是成等差數(shù)列的,所以,

第四項(xiàng)均為零,所以

67.解:令,令

    所以

68. 解:圓心為,要沒有公共點(diǎn),根據(jù)圓心到直線的距離大于半徑可得

,即

69.解:依題可以構(gòu)造一個(gè)正方體,其體對角線就是外接球的直徑.

 ,

70. 解:①對除法如不滿足,所以排除,

②取,對乘法, ③④的正確性容易推得。

71.【答案】: -1

【分析】: a-2ai-1=a-1-2ai=2i,a=-1

【考點(diǎn)】: 復(fù)數(shù)的運(yùn)算

【易錯(cuò)】: 增根a=1沒有舍去。

72.【答案】: 0

【分析】: 利用數(shù)形結(jié)合知,向量a與


同步練習(xí)冊答案