顯然有, 而,于是 查看更多

 

題目列表(包括答案和解析)

對命題“abc推出ac”,關(guān)于真假問題,甲、乙兩個學(xué)生的判斷如下:甲生判斷是真命題.理由是:由ab可知ab的方向相同或相反,由bc可知cb的方向相同或相反,從而有ac的方向相同或相反,故ac,即原命題為真命題;乙生判斷是假命題.理由是:當(dāng)兩個非零向量a,c不平行,而b=0時,顯然abbc,但不能推出abc,故此時結(jié)論不成立,即原命題為假命題.究竟甲、乙兩生誰的判斷正確呢?請給以分析.

查看答案和解析>>

已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

【解析】第一問當(dāng)時,,則。

依題意得:,即    解得

第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時,,令

當(dāng)變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,。∴上的最大值為2.

②當(dāng)時, .當(dāng)時, ,最大值為0;

當(dāng)時, 上單調(diào)遞增。∴最大值為。

綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

當(dāng)時,即時,在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時,

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>

雞兔同籠

  你以前聽說過“雞兔同籠”問題嗎?這個問題,是我國古代著名趣題之一.大約在1 500年前,《孫子算經(jīng)》中就記載了這個有趣的問題.書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?”這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數(shù),有35個頭;從下面數(shù),有94只腳.求籠中各有幾只雞和兔?

  你會解答這個問題嗎?你想知道《孫子算經(jīng)》中是如何解答這個問題的嗎?

  解答思路是這樣的:假如砍去每只雞、每只兔一半的腳,則每只雞就變成了“獨(dú)角雞”,每只兔就變成了“雙腳兔”.這樣,(1)雞和兔的腳的總數(shù)就由94只變成了47只;(2)如果籠子里有一只兔子,則腳的總數(shù)就比頭的總數(shù)多1.因此,腳的總只數(shù)47與總頭數(shù)35的差,就是兔子的只數(shù),即47-35=12(只).顯然,雞的只數(shù)就是35-12=23(只)了.

  這一思路新穎而奇特,其“砍足法”也令古今中外數(shù)學(xué)家贊嘆不已.這種思維方法叫化歸法.

  化歸法就是在解決問題時,先不對問題采取直接的分析,而是將題中的條件或問題進(jìn)行變形,使之轉(zhuǎn)化,直到最終把它歸成某個已經(jīng)解決的問題.

1.古代《孫子算經(jīng)》就有這么好的解法——化歸法,這一思路新穎而奇特,其“砍足法”也令古今中外數(shù)學(xué)家贊嘆不已.對此,談?wù)勀愕目捶ǎ?/P>

2.我國古代數(shù)學(xué)研究一直處于領(lǐng)先地位,現(xiàn)在有所落后了,對此,我們不應(yīng)只感嘆古人的偉大,而更應(yīng)該樹立為科學(xué)而奮斗終身的信心,同學(xué)們,你們準(zhǔn)備好了嗎?

查看答案和解析>>

動物中的數(shù)學(xué)“天才”

  蜜蜂蜂房是嚴(yán)格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成.組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料.蜂房的巢壁厚0.073毫米,誤差極。

  丹頂鶴總是成群結(jié)隊遷飛,而且排成“人”字形.“人”字形的角度是110度.更精確地計算還表明“人”字形夾角的一半——即每邊與鶴群前進(jìn)方向的夾角為54度44分8秒!而金剛石結(jié)晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的“默契”?

  蜘蛛結(jié)的“八卦”形網(wǎng),是既復(fù)雜又美麗的八角形幾何圖案,人們即使用直尺的圓規(guī)也很難畫出像蜘蛛網(wǎng)那樣勻稱的圖案.

  冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數(shù)學(xué),因為球形使身體的表面積最小,從而散發(fā)的熱量也最少.

  真正的數(shù)學(xué)“天才”是珊瑚蟲.珊瑚蟲在自己的身上記下“日歷”,它們每年在自己的體壁上“刻畫”出365條斑紋,顯然是一天“畫”一條.奇怪的是,古生物學(xué)家發(fā)現(xiàn)3億5千萬年前的珊瑚蟲每年“畫”出400幅“水彩畫”.天文學(xué)家告訴我們,當(dāng)時地球一天僅21.9小時,一年不是365天,而是400天.

1.同學(xué)們,大自然中有許多有關(guān)數(shù)學(xué)的奧妙,許多現(xiàn)象有意無意地應(yīng)用著數(shù)學(xué),對于這些現(xiàn)象你有什么看法嗎?請你談?wù)勀銓Υ笞匀恢械臄?shù)學(xué)現(xiàn)象的認(rèn)識.

2.把你發(fā)現(xiàn)的大自然中的數(shù)學(xué)問題告訴你的同學(xué)和老師,讓他們也分享一下你認(rèn)識大自然的樂趣.

查看答案和解析>>

1.解:由題意可知A=(-2,3),B=(0,4),∴=.

2.解:∵=3x2,∵在(a,a3)處切線為y-a3=3a2(x-a),令y=0,得切線與x軸交點(diǎn)(),切線與直線x=a交于(a,a3),∴曲線處的切線與x軸、直線所圍成的三角形的面積為S=,令S=,解得a=±1.

3.解:由已知得1-tanαtanβ=tanα-tanβ,∴tanα=.

4.解:=

5.解:4位乘客進(jìn)入4節(jié)車廂共有256種不同的可能,6位乘客進(jìn)入各節(jié)車廂的人數(shù)恰為0,1,2,3的方法共有,∴這6位乘客進(jìn)入各節(jié)車廂的人數(shù)恰好為0,1,2,3的概率為.

6.解:①菱形不可能,如果這個四邊形是菱形,這時菱形的一條對角線垂直拋物線的對稱軸,這時四邊形的必有一個頂點(diǎn)在拋物線的對稱軸上(非拋物線的頂點(diǎn)); ④平行四邊形,也不可能,因為拋物上四個點(diǎn)組成的四邊形最多有一組對邊平行.故連接拋物線上任意四點(diǎn)組成的四邊形可能是②③⑤.

7. 解:復(fù)數(shù)=。

8. 解:。

9. 解:已知 ,,∴ ,,

=

=

10. 解:在數(shù)列中,若,∴ ,即{}是以為首項,2為公比的等比數(shù)列,,所以該數(shù)列的通項.

11.解:設(shè),函數(shù)有最大值,∵有最小值,∴ 0<a<1, 則不等式的解為,解得2<x<3,所以不等式的解集為.

12.解:已知變量滿足約束條件 在坐標(biāo)系

中畫出可行域,如圖為四邊形ABCD,其中A(3,1),

目標(biāo)函數(shù)(其中)中的z表示斜率為-a的直線系中的

截距的大小,若僅在點(diǎn)處取得最大值,則斜率應(yīng)小于,即

,所以的取值范圍為(1,+∞)。

13.【答案】

【分析】

14.【答案】:7

【分析】:畫出可行域,當(dāng)直線過點(diǎn)(1,2)時,

15.【答案】

【分析】恒成立,

恒成立,       

16.【答案】:18

【分析】是方程的兩根,故有:

         (舍)。

        

17.【答案】:25

【分析】:所有的選法數(shù)為,兩門都選的方法為。         故共有選法數(shù)為

18.【答案】

【分析】

         代入得:

         設(shè)

         又

        

19.解:, 

20.解:  點(diǎn)在x=0處連續(xù),

所以  故

21.解: 

22.解: 

23.解:設(shè)圓心,直線的斜率為, 弦AB的中點(diǎn)為的斜率為,,所以 由點(diǎn)斜式得

24. 解:則底面共,

,由分類計數(shù)原理得上底面共,由分步類計數(shù)原理得共有

25.解析:本小題主要考查三點(diǎn)共線問題。

      (舍負(fù)).

26.解析:本小題主要考查橢圓的第一定義的應(yīng)用。依題直線過橢圓的左焦點(diǎn),在 中,,又,∴

27.解析:本小題主要考查三角形中正弦定理的應(yīng)用。依題由正弦定理得:

,即,

28.解析:本小題主要考查球的內(nèi)接幾何體體積計算問題。其關(guān)鍵是找出

球心,從而確定球的半徑。由題意,三角形DAC,三角形DBC都

是直角三角形,且有公共斜邊。所以DC邊的中點(diǎn)就是球心(到

D、A、C、B四點(diǎn)距離相等),所以球的半徑就是線段DC長度的一半。

29.解析:本小題主要考查二次函數(shù)問題。對稱軸為下方圖像翻到軸上方.由區(qū)間[0,3]上的最大值為2,知解得檢驗時,

不符,而時滿足題意.

30.解析:本小題主要考查排列組合知識。依題先排除1和2的剩余4個元素有

種方案,再向這排好的4個元素中插入1和2捆綁的整體,有種插法,

∴不同的安排方案共有種。

31.解析:本小題主要考查線性規(guī)劃的相關(guān)知識。由恒成立知,當(dāng)時,

恒成立,∴;同理,∴以,b為坐標(biāo)點(diǎn)

所形成的平面區(qū)域是一個正方形,所以面積為1.

32.解析:,所以,系數(shù)為.

33.解析:由,所以,表面積為.

34.解析:拋物線的焦點(diǎn)為,所以圓心坐標(biāo)為,,圓C的方程為.

35.解析:令,,則

所以.

36.解析:

所以.

37.解析:由已知得,單調(diào)遞減,所以當(dāng)時,

所以,因為有且只有一個常數(shù)符合題意,所以,解得,所以的取值的集合為.

38.【解】:∵展開式中項為

  ∴所求系數(shù)為   故填

【點(diǎn)評】:此題重點(diǎn)考察二項展開式中指定項的系數(shù),以及組合思想;

【突破】:利用組合思想寫出項,從而求出系數(shù);

39.【解】:如圖可知:過原心作直線的垂線,則長即為所求;

的圓心為,半徑為

 點(diǎn)到直線的距離為

  ∴      故上各點(diǎn)到的距離的最小值為

【點(diǎn)評】:此題重點(diǎn)考察圓的標(biāo)準(zhǔn)方程和點(diǎn)到直線的距離;

【突破】:數(shù)形結(jié)合,使用點(diǎn)到直線的距離距離公式。

40.【解】:如圖可知:∵

    ∴  ∴正四棱柱的體積等于

【點(diǎn)評】:此題重點(diǎn)考察線面角,解直角三角形,以及求正四面題的體積;

【突破】:數(shù)形結(jié)合,重視在立體幾何中解直角三角形,熟記有關(guān)公式。

41.【解】:∵等差數(shù)列的前項和為,且 

  即   ∴

  ∴,

  ∴  故的最大值為,應(yīng)填

【點(diǎn)評】:此題重點(diǎn)考察等差數(shù)列的通項公式,前項和公式,以及不等式的變形求范圍;

【突破】:利用等差數(shù)列的前項和公式變形不等式,利用消元思想確定的范圍解答本題的關(guān)鍵;

42.解:

43.解:設(shè),即

是等邊三角形,,

中,

44.解:①,向量垂直

構(gòu)成等邊三角形,的夾角應(yīng)為

所以真命題只有②。

45.解:分兩類:第一棒是丙有,第一棒是甲、乙中一人有

因此共有方案

46.【答案】  2

【解析】則向量與向量共線

47.【答案】 2

【解析】,∴切線的斜率,所以由

48.【答案】

【解析】設(shè)A()B(,)由,();∴由拋物線的定義知

【考點(diǎn)】直線與拋物線的位置關(guān)系,拋物線定義的應(yīng)用

49.【答案】兩組相對側(cè)面分別平行;一組相對側(cè)面平行且全等;對角線交于一點(diǎn);底面是平行四邊形.

注:上面給出了四個充要條件.如果考生寫出其他正確答案,同樣給分.

50.答案:

解析:本小題主要考查求反函數(shù)基本知識。求解過程要注意依據(jù)函數(shù)的定義域進(jìn)行分段求解以及反函數(shù)的定義域問題。

51.答案:

解析:本小題主要考查立體幾何球面距離及點(diǎn)到面的距離。設(shè)球的半徑為,則,∴設(shè)、兩點(diǎn)對球心張角為,則,∴,∴,∴所在平面的小圓的直徑,∴,設(shè)所在平面的小圓圓心為,則球心到平面ABC的距離為

52.答案:5

解析:本小題主要考查二項式定理中求特定項問題。依題中,只有時,其展開式既不出現(xiàn)常數(shù)項,也不會出現(xiàn)與、乘積為常數(shù)的項。

53.答案:

解析:本小題主要針對考查三角函數(shù)圖像對稱性及周期性。依題在區(qū)間有最小值,無最大值,∴區(qū)間的一個半周期的子區(qū)間,且知的圖像關(guān)于對稱,∴,取

54.解:由已知得,則

55.解:

56.

57.解:真命題的代號是:   BD  。易知所盛水的容積為容器容量的一半,故D正確,于是A錯誤;水平放置時由容器形狀的對稱性知水面經(jīng)過點(diǎn)P,故B正確;C的錯誤可由圖1中容器位置向右邊傾斜一些可推知點(diǎn)P將露出水面。

58.【答案】

【解析】

59.【答案】

【解析】

60.【答案】(-1,2)

【解析】由函數(shù)的圖象過點(diǎn)(1,2)得: 即函數(shù)過點(diǎn) 則其反函數(shù)過點(diǎn)所以函數(shù)的圖象一定過點(diǎn)

61.【答案】 ,

【解析】(1)當(dāng)a>0時,由,所以的定義域是;

        (2) 當(dāng)a>1時,由題意知;當(dāng)0<a<1時,為增函數(shù),不合;

           當(dāng)a<0時,在區(qū)間上是減函數(shù).故填.

62.【答案】   ,  6

【解析】第二空可分:

①當(dāng) 時, ;

②當(dāng) 時, ;

③當(dāng)時, ;

所以 

也可用特殊值法或ij同時出現(xiàn)6次.

63.解:由余弦定理,原式

64.解:由題意知所以

,所以解集為

65.解:依題意,所以

66.解:由觀察可知當(dāng),每一個式子的第三項的系數(shù)是成等差數(shù)列的,所以

第四項均為零,所以。

67.解:令,令

    所以

68. 解:圓心為,要沒有公共點(diǎn),根據(jù)圓心到直線的距離大于半徑可得

,即,

69.解:依題可以構(gòu)造一個正方體,其體對角線就是外接球的直徑.

 ,

70. 解:①對除法如不滿足,所以排除,

②取,對乘法, ③④的正確性容易推得。

71.【答案】: -1

【分析】: a-2ai-1=a-1-2ai=2i,a=-1

【考點(diǎn)】: 復(fù)數(shù)的運(yùn)算

【易錯】: 增根a=1沒有舍去。

72.【答案】: 0

【分析】: 利用數(shù)形結(jié)合知,向量a與


同步練習(xí)冊答案