講解 分類求和.得 查看更多

 

題目列表(包括答案和解析)

在一次獨(dú)立性檢驗(yàn)中,得出列聯(lián)表如下:
A
.
A
合計(jì)
B 200 800 1000
.
B
180 a 180+a
合計(jì) 380 800+a 1180+a
且最后發(fā)現(xiàn),兩個(gè)分類變量A和B沒(méi)有任何關(guān)系,則a的可能值是( 。

查看答案和解析>>

選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共20分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:幾何證明選講
如圖,PA切⊙O于點(diǎn)A,D為PA的中點(diǎn),過(guò)點(diǎn)D引割線交⊙O于B、C兩點(diǎn).求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
設(shè)M=
.
10
02
.
,N=
.
1
2
0
01
.
,試求曲線y=sinx在矩陣MN變換下的曲線方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被圓C所截得的弦長(zhǎng).
D.選修4-5:不等式選講
解不等式:|2x+1|-|x-4|<2.

查看答案和解析>>

利用獨(dú)立性檢驗(yàn)來(lái)判斷兩個(gè)分類變量X和Y是否有關(guān)系,通過(guò)查閱下表來(lái)確定“X和Y有關(guān)系的可信度為了調(diào)查用電腦時(shí)間與視力下降是否有關(guān)系.現(xiàn)從某地網(wǎng)民中抽取100位居民進(jìn)行調(diào)查.經(jīng)過(guò)計(jì)算得K2≈3.855,那么就有
95
95
%的根據(jù)認(rèn)為用電腦時(shí)間與視圖下降有關(guān)系.
K2>K 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問(wèn)題,他們?cè)谏碁┥袭孅c(diǎn)或用小石子來(lái)表示數(shù),按照點(diǎn)或小石子能排列的形狀對(duì)數(shù)進(jìn)行分類,如圖2中的實(shí)心點(diǎn)個(gè)數(shù)1,5,12,22,…,被稱為五角形數(shù),其中第1個(gè)五角形數(shù)記作a1=1,第2個(gè)五角形數(shù)記作a2=5,第3個(gè)五角形數(shù)記作a3=12,第4個(gè)五角形數(shù)記作a4=22,…,若按此規(guī)律繼續(xù)下去,得數(shù)列{an},則an-an-1=
3n-2(n≥2)
3n-2(n≥2)

查看答案和解析>>

(2013•唐山二模)某校學(xué)習(xí)小組開(kāi)展“學(xué)生語(yǔ)文成績(jī)與外語(yǔ)成績(jī)的關(guān)系”的課題研究,對(duì)該校高二年級(jí)800名學(xué)生上學(xué)期期末語(yǔ)文和外語(yǔ)成績(jī),按優(yōu)秀和不優(yōu)秀分類得結(jié)果:語(yǔ)文和外語(yǔ)都優(yōu)秀的有60人,語(yǔ)文成績(jī)優(yōu)秀但外語(yǔ)不優(yōu)秀的有140人,外語(yǔ)成績(jī)優(yōu)秀但語(yǔ)文不優(yōu)秀的有100人.
(Ⅰ)能否在犯錯(cuò)概率不超過(guò)0.001的前提下認(rèn)為該校學(xué)生的語(yǔ)文成績(jī)與外語(yǔ)成績(jī)有關(guān)系?
(Ⅱ)4名成員隨機(jī)分成兩組,每組2人,一組負(fù)責(zé)收集成績(jī),另一組負(fù)責(zé)數(shù)據(jù)處理.求學(xué)生甲分到負(fù)責(zé)收集成績(jī)組,學(xué)生乙分到負(fù)責(zé)數(shù)據(jù)處理組的概率.
p(K2≥k0 0.010 0.005 0.001
k0 6.635 7.879 10.828
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

1.解:由題意可知A=(-2,3),B=(0,4),∴=.

2.解:∵=3x2,∵在(a,a3)處切線為y-a3=3a2(x-a),令y=0,得切線與x軸交點(diǎn)(),切線與直線x=a交于(a,a3),∴曲線處的切線與x軸、直線所圍成的三角形的面積為S=,令S=,解得a=±1.

3.解:由已知得1-tanαtanβ=tanα-tanβ,∴tanα=.

4.解:=

5.解:4位乘客進(jìn)入4節(jié)車廂共有256種不同的可能,6位乘客進(jìn)入各節(jié)車廂的人數(shù)恰為0,1,2,3的方法共有,∴這6位乘客進(jìn)入各節(jié)車廂的人數(shù)恰好為0,1,2,3的概率為.

6.解:①菱形不可能,如果這個(gè)四邊形是菱形,這時(shí)菱形的一條對(duì)角線垂直拋物線的對(duì)稱軸,這時(shí)四邊形的必有一個(gè)頂點(diǎn)在拋物線的對(duì)稱軸上(非拋物線的頂點(diǎn)); ④平行四邊形,也不可能,因?yàn)閽佄锷纤膫(gè)點(diǎn)組成的四邊形最多有一組對(duì)邊平行.故連接拋物線上任意四點(diǎn)組成的四邊形可能是②③⑤.

7. 解:復(fù)數(shù)=

8. 解:。

9. 解:已知 ,,∴ ,,

=

=

10. 解:在數(shù)列中,若,∴ ,即{}是以為首項(xiàng),2為公比的等比數(shù)列,,所以該數(shù)列的通項(xiàng).

11.解:設(shè),函數(shù)有最大值,∵有最小值,∴ 0<a<1, 則不等式的解為,解得2<x<3,所以不等式的解集為.

12.解:已知變量滿足約束條件 在坐標(biāo)系

中畫出可行域,如圖為四邊形ABCD,其中A(3,1),

目標(biāo)函數(shù)(其中)中的z表示斜率為-a的直線系中的

截距的大小,若僅在點(diǎn)處取得最大值,則斜率應(yīng)小于,即

,所以的取值范圍為(1,+∞)。

13.【答案】

【分析】

14.【答案】:7

【分析】:畫出可行域,當(dāng)直線過(guò)點(diǎn)(1,2)時(shí),

15.【答案】

【分析】恒成立,

恒成立,       

16.【答案】:18

【分析】是方程的兩根,故有:

         (舍)。

        

17.【答案】:25

【分析】:所有的選法數(shù)為,兩門都選的方法為。         故共有選法數(shù)為

18.【答案】

【分析】

         代入得:

         設(shè)

         又

        

19.解:, 

20.解:  點(diǎn)在x=0處連續(xù),

所以  故

21.解: 

22.解:  ,

23.解:設(shè)圓心,直線的斜率為, 弦AB的中點(diǎn)為的斜率為,,所以 由點(diǎn)斜式得

24. 解:則底面共,

,由分類計(jì)數(shù)原理得上底面共,由分步類計(jì)數(shù)原理得共有

25.解析:本小題主要考查三點(diǎn)共線問(wèn)題。

      (舍負(fù)).

26.解析:本小題主要考查橢圓的第一定義的應(yīng)用。依題直線過(guò)橢圓的左焦點(diǎn),在 中,,又,∴

27.解析:本小題主要考查三角形中正弦定理的應(yīng)用。依題由正弦定理得:

,即,

28.解析:本小題主要考查球的內(nèi)接幾何體體積計(jì)算問(wèn)題。其關(guān)鍵是找出

球心,從而確定球的半徑。由題意,三角形DAC,三角形DBC都

是直角三角形,且有公共斜邊。所以DC邊的中點(diǎn)就是球心(到

D、A、C、B四點(diǎn)距離相等),所以球的半徑就是線段DC長(zhǎng)度的一半。

29.解析:本小題主要考查二次函數(shù)問(wèn)題。對(duì)稱軸為下方圖像翻到軸上方.由區(qū)間[0,3]上的最大值為2,知解得檢驗(yàn)時(shí),

不符,而時(shí)滿足題意.

30.解析:本小題主要考查排列組合知識(shí)。依題先排除1和2的剩余4個(gè)元素有

種方案,再向這排好的4個(gè)元素中插入1和2捆綁的整體,有種插法,

∴不同的安排方案共有種。

31.解析:本小題主要考查線性規(guī)劃的相關(guān)知識(shí)。由恒成立知,當(dāng)時(shí),

恒成立,∴;同理,∴以,b為坐標(biāo)點(diǎn)

所形成的平面區(qū)域是一個(gè)正方形,所以面積為1.

32.解析:,所以,系數(shù)為.

33.解析:由,所以,表面積為.

34.解析:拋物線的焦點(diǎn)為,所以圓心坐標(biāo)為,,圓C的方程為.

35.解析:令,,則

所以.

36.解析:

所以.

37.解析:由已知得,單調(diào)遞減,所以當(dāng)時(shí),

所以,因?yàn)橛星抑挥幸粋(gè)常數(shù)符合題意,所以,解得,所以的取值的集合為.

38.【解】:∵展開(kāi)式中項(xiàng)為

  ∴所求系數(shù)為   故填

【點(diǎn)評(píng)】:此題重點(diǎn)考察二項(xiàng)展開(kāi)式中指定項(xiàng)的系數(shù),以及組合思想;

【突破】:利用組合思想寫出項(xiàng),從而求出系數(shù);

39.【解】:如圖可知:過(guò)原心作直線的垂線,則長(zhǎng)即為所求;

的圓心為,半徑為

 點(diǎn)到直線的距離為

  ∴      故上各點(diǎn)到的距離的最小值為

【點(diǎn)評(píng)】:此題重點(diǎn)考察圓的標(biāo)準(zhǔn)方程和點(diǎn)到直線的距離;

【突破】:數(shù)形結(jié)合,使用點(diǎn)到直線的距離距離公式。

40.【解】:如圖可知:∵

    ∴  ∴正四棱柱的體積等于

【點(diǎn)評(píng)】:此題重點(diǎn)考察線面角,解直角三角形,以及求正四面題的體積;

【突破】:數(shù)形結(jié)合,重視在立體幾何中解直角三角形,熟記有關(guān)公式。

41.【解】:∵等差數(shù)列的前項(xiàng)和為,且 

  即   ∴

  ∴,,

  ∴  故的最大值為,應(yīng)填

【點(diǎn)評(píng)】:此題重點(diǎn)考察等差數(shù)列的通項(xiàng)公式,前項(xiàng)和公式,以及不等式的變形求范圍;

【突破】:利用等差數(shù)列的前項(xiàng)和公式變形不等式,利用消元思想確定的范圍解答本題的關(guān)鍵;

42.解:

43.解:設(shè),即

是等邊三角形,,

中,

44.解:①,向量垂直

構(gòu)成等邊三角形,的夾角應(yīng)為

所以真命題只有②。

45.解:分兩類:第一棒是丙有,第一棒是甲、乙中一人有

因此共有方案

46.【答案】  2

【解析】則向量與向量共線

47.【答案】 2

【解析】,∴切線的斜率,所以由

48.【答案】

【解析】設(shè)A()B(,)由,,();∴由拋物線的定義知

【考點(diǎn)】直線與拋物線的位置關(guān)系,拋物線定義的應(yīng)用

49.【答案】?jī)山M相對(duì)側(cè)面分別平行;一組相對(duì)側(cè)面平行且全等;對(duì)角線交于一點(diǎn);底面是平行四邊形.

注:上面給出了四個(gè)充要條件.如果考生寫出其他正確答案,同樣給分.

50.答案:

解析:本小題主要考查求反函數(shù)基本知識(shí)。求解過(guò)程要注意依據(jù)函數(shù)的定義域進(jìn)行分段求解以及反函數(shù)的定義域問(wèn)題。

51.答案:

解析:本小題主要考查立體幾何球面距離及點(diǎn)到面的距離。設(shè)球的半徑為,則,∴設(shè)兩點(diǎn)對(duì)球心張角為,則,∴,∴,∴所在平面的小圓的直徑,∴,設(shè)所在平面的小圓圓心為,則球心到平面ABC的距離為

52.答案:5

解析:本小題主要考查二項(xiàng)式定理中求特定項(xiàng)問(wèn)題。依題對(duì)中,只有時(shí),其展開(kāi)式既不出現(xiàn)常數(shù)項(xiàng),也不會(huì)出現(xiàn)與、乘積為常數(shù)的項(xiàng)。

53.答案:

解析:本小題主要針對(duì)考查三角函數(shù)圖像對(duì)稱性及周期性。依題在區(qū)間有最小值,無(wú)最大值,∴區(qū)間的一個(gè)半周期的子區(qū)間,且知的圖像關(guān)于對(duì)稱,∴,取

54.解:由已知得,則

55.解:

56.

57.解:真命題的代號(hào)是:   BD  。易知所盛水的容積為容器容量的一半,故D正確,于是A錯(cuò)誤;水平放置時(shí)由容器形狀的對(duì)稱性知水面經(jīng)過(guò)點(diǎn)P,故B正確;C的錯(cuò)誤可由圖1中容器位置向右邊傾斜一些可推知點(diǎn)P將露出水面。

58.【答案】

【解析】

59.【答案】

【解析】

60.【答案】(-1,2)

【解析】由函數(shù)的圖象過(guò)點(diǎn)(1,2)得: 即函數(shù)過(guò)點(diǎn) 則其反函數(shù)過(guò)點(diǎn)所以函數(shù)的圖象一定過(guò)點(diǎn)

61.【答案】 ,

【解析】(1)當(dāng)a>0時(shí),由,所以的定義域是;

        (2) 當(dāng)a>1時(shí),由題意知;當(dāng)0<a<1時(shí),為增函數(shù),不合;

           當(dāng)a<0時(shí),在區(qū)間上是減函數(shù).故填.

62.【答案】   ,  6

【解析】第二空可分:

①當(dāng) 時(shí), ;

②當(dāng) 時(shí), ;

③當(dāng)時(shí), ;

所以 

也可用特殊值法或ij同時(shí)出現(xiàn)6次.

63.解:由余弦定理,原式

64.解:由題意知所以

,所以解集為。

65.解:依題意,所以

66.解:由觀察可知當(dāng),每一個(gè)式子的第三項(xiàng)的系數(shù)是成等差數(shù)列的,所以,

第四項(xiàng)均為零,所以。

67.解:令,令

    所以

68. 解:圓心為,要沒(méi)有公共點(diǎn),根據(jù)圓心到直線的距離大于半徑可得

,即

69.解:依題可以構(gòu)造一個(gè)正方體,其體對(duì)角線就是外接球的直徑.

 ,

70. 解:①對(duì)除法如不滿足,所以排除,

②取,對(duì)乘法, ③④的正確性容易推得。

71.【答案】: -1

【分析】: a-2ai-1=a-1-2ai=2i,a=-1

【考點(diǎn)】: 復(fù)數(shù)的運(yùn)算

【易錯(cuò)】: 增根a=1沒(méi)有舍去。

72.【答案】: 0

【分析】: 利用數(shù)形結(jié)合知,向量a與


同步練習(xí)冊(cè)答案