且兩平面交線為. 查看更多

 

題目列表(包括答案和解析)

平面直角坐標(biāo)系xOy中,已知⊙M經(jīng)過點(diǎn)F1(0,-c),F(xiàn)2(0,c),A(
3
c,0)三點(diǎn),其中c>0.
(1)求⊙M的標(biāo)準(zhǔn)方程(用含c的式子表示);
(2)已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
(其中a2-b2=c2)的左、右頂點(diǎn)分別為D、B,⊙M與x軸的兩個(gè)交點(diǎn)分別為A、C,且A點(diǎn)在B點(diǎn)右側(cè),C點(diǎn)在D點(diǎn)右側(cè).
①求橢圓離心率的取值范圍;
②若A、B、M、O、C、D(O為坐標(biāo)原點(diǎn))依次均勻分布在x軸上,問直線MF1與直線DF2的交點(diǎn)是否在一條定直線上?若是,請求出這條定直線的方程;若不是,請說明理由.

查看答案和解析>>

16、平面內(nèi)的一個(gè)四邊形為平行四邊形的充要條件有多個(gè),如兩組對(duì)邊分別平行,類似地,寫出空間中的一個(gè)四棱柱為平行六面體的兩個(gè)充要條件:
充要條件①
三組對(duì)面分別平行的四棱柱為平行六面體

充要條件②
平行六面體的對(duì)角線交于一點(diǎn),并且在交點(diǎn)處互相平分;

(寫出你認(rèn)為正確的兩個(gè)充要條件)

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0),B(0,-2),點(diǎn)C滿足
OC
OA
OB
,其中α,β∈R,且α-2β=1.
(Ⅰ)求點(diǎn)C的軌跡方程;
(Ⅱ)設(shè)點(diǎn)C的軌跡與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
交于兩點(diǎn)M,N,且以MN為直徑的圓過原點(diǎn),求證:
1
a2
-
1
b2
為定值.

查看答案和解析>>

10、平面內(nèi)兩直線有三種位置關(guān)系:相交,平行與重合.已知兩個(gè)相交平面α,β與兩直線l1,l2,又知l1,l2在α內(nèi)的射影為s1,s2,在β內(nèi)的射影為t1,t2.試寫出s1,s2與t1,t2滿足的條件,使之一定能成為l1,l2是異面直線的充分條件
s1∥s2,并且t1與t2相交(t1∥t2,并且s1與s2相交)

查看答案和解析>>

平面直角坐標(biāo)系xOy中,已知以O(shè)為圓心的圓與直線l:y=mx+(3-4m)恒有公共點(diǎn),且要求使圓O的面積最。
(1)寫出圓O的方程;
(2)圓O與x軸相交于A、B兩點(diǎn),圓內(nèi)動(dòng)點(diǎn)P使|
PA
|
|
PO
|
、|
PB
|
成等比數(shù)列,求
PA
PB
的范圍.

查看答案和解析>>


同步練習(xí)冊答案