(1)若的值域, 查看更多

 

題目列表(包括答案和解析)

的定義域為 ,值域為,則稱函數(shù)上的“四維方軍”函數(shù).

(1)設(shè)上的“四維方軍”函數(shù),求常數(shù)的值;

(2)問是否存在常數(shù)使函數(shù)是區(qū)間上的“四維方軍”函數(shù)?若存在,求出的值,否則,請說明理由.

 

查看答案和解析>>

的定義域為 ,值域為,則稱函數(shù)上的“四維方軍”函數(shù).
(1)設(shè)上的“四維方軍”函數(shù),求常數(shù)的值;
(2)問是否存在常數(shù)使函數(shù)是區(qū)間上的“四維方軍”函數(shù)?若存在,求出的值,否則,請說明理由.

查看答案和解析>>

的定義域為 ,值域為,則稱函數(shù)上的“四維方軍”函數(shù).
(1)設(shè)上的“四維方軍”函數(shù),求常數(shù)的值;
(2)問是否存在常數(shù)使函數(shù)是區(qū)間上的“四維方軍”函數(shù)?若存在,求出的值,否則,請說明理由.

查看答案和解析>>

若存在常數(shù)k和b,使得函數(shù)f(x)和g(x)在它們的公共定義域上的任意實數(shù)x分別滿足:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為函數(shù)f(x)和g(x)的“隔離直線”.已知f(x)=x2,g(x)=2elnx.
(I)求F(x)=f(x)-g(x)的極值;
(II)函數(shù)f(x)和g(x)是否存在隔離直線?若存在,求出此隔離直線的方程,若不存在,請說明理由.

查看答案和解析>>

若實數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.
(1)若x2-1比1遠(yuǎn)離0,求x的取值范圍;
(2)對任意兩個不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab
ab
;
(3)已知函數(shù)f(x)的定義域D={{x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中遠(yuǎn)離0的那個值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

 

一、選擇題(本大題共12小題,每小題5分,共60分。

1―5 BBACB    6―10 ADCDD    11―12 AB

二、填空題(本大題共4小題,每小題6分,共16分,

13.14   14.2   15.30   16.①③

三、解答題(本大題共6小題,共計76分)

17.解:(1)  …………2分

   (2)由題設(shè), …………10分

 …………12分

18.解:(1)記“第一次與第二次取到的球上的號碼的和是4”為事件A,則

 …………5分

所以第一次與第二次取到的地球上的號碼的和是4的概率 …………6分

   (2)記“第一次與第二次取到的上的號碼的積不小于6”為事件B,則

  …………11分

19.解法一:(1)∵E,F(xiàn)分別是AB和PB的中點,

∴EF∥PA  …………1分

又ABCD是正方形,∴CD⊥AD,…………2分

由PD⊥底面ABCD得CD⊥PD,CD⊥面PAD,

∴CD⊥PA,∴EF⊥CD。 …………4分

 

 

   (2)設(shè)AB=a,則由PD⊥底面ABCD及ABCD是正方形可求得

  •    (3)在平面PAD內(nèi)是存在一點G,使G在平面PCB

    上的射影為△PCB的外心,

    G點位置是AD的中點。  …………9分

    證明如下:由已知條件易證

    Rt△PDG≌Rt△CDG≌Rt△BAG,…………10分

    ∴GP=GB=GC,即點G到△PBC三頂點的距離相等。 ……11分

    ∴G在平面PCB上的射影為△PCB的外心。 …………12分

    解法二:以DA,DC,DP所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系(如圖)。

       (1)

      …………4分

     

     

       (2)設(shè)平面DEF的法向量為

       (3)假設(shè)存在點G滿足題意

    20.解:(1)設(shè)

       (2)

    21.(1)令 …………1分

      …………2分

       (2)設(shè)

       (3)由

    ∴不等式化為  …………6分

    由(2)已證 …………7分

    ①當(dāng)

    ②當(dāng)不成立,∴不等式的解集為 …………10分

    ③當(dāng),

    22.解:(1)  …………1分

       (2)設(shè)

    ①當(dāng)

    ②當(dāng)

     


    同步練習(xí)冊答案