16. 已知mÎR.設(shè)P:不等式,Q:函數(shù)在上有極值.求使P正確且Q正確的m的取值范圍. 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分
A.選修4-4:極坐標與參數(shù)方程在極坐標系中,直線l 的極坐標方程為θ=
π
3
(ρ∈R ),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標.
B.選修4-5:不等式選講
設(shè)實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

(本題滿分14分)已知,且以下命題都為真命題:

命題 實系數(shù)一元二次方程的兩根都是虛數(shù);

命題 存在復數(shù)同時滿足.

求實數(shù)的取值范圍.

查看答案和解析>>

(本題滿分14分)已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.

(1)求證:GH∥平面CDE;

(2)若,求四棱錐F-ABCD的體積.

 

 

 

查看答案和解析>>

(本題滿分14分).如圖,ABCD中,AB=1,AD=2AB,∠ADC=,EC⊥面ABCD,

EF∥AC, EF=, CE=1

(1)求證:AF∥面BDE

(2)求CF與面DCE所成角的正切值。

 

查看答案和解析>>

一、填空題:

1.    2. 三    3.  1    4.  25  5.    6. -1  7.     8. (1,0)

9.    10.  8    11. 1   12. (0,2)  13. 2026    14. ①②③

二、解答題:

15. 解:(1)因為,所以

…………………………4

            ……………………………………………………..6分

因此,當,即)時,取得最大值;…8分

(2)由,兩邊平方得

,即.……………………………………………12分

因此,.……………………………14分

 

16.解:由已知不等式得

        ①

或             、

不等式①的解為

不等式②的解為…………………………………………………4分

因為,對時,P是正確的………………………..6分

對函數(shù)求導…8分

,即

當且僅當D>0時,函數(shù)f()在(-¥,+¥)上有極值

,

因為,當時,Q是正確的………………………………………………12分

綜上,使P正確且Q正確時,實數(shù)m的取值范圍為(-¥,-1)È……….14分

 

17.解:(1)因為函數(shù)的圖象關(guān)于原點對稱,所以,

,得……………………………………….2分

時,舍去;

時,,令,解得.

所以符合條件的m值為-1 …………………………………………………………………4分

(2)由(1)得,任取,

……………………6分

   ∴

………………………………………………………………….8分

∴當時,,此時為增函數(shù);

時,,此時為減函數(shù)…10分

(3)由(2)知,當上為減函數(shù);同理在上也為減函數(shù)

時,與已知矛盾,舍去;………………12分

時,因為函數(shù)的值域為

,解得……………………………………14分

18.解:(1)由,令,則,又,所以.

,則.  …………………………………………………………………………………….2分

時,由,可得. 即..6分

所以是以為首項,為公比的等比數(shù)列,于是. ……8分

(2)數(shù)列為等差數(shù)列,公差,可得. ….10分

從而. ……………………………………………..12分

……….16分

19.解:(1)依題意知汽車從甲地勻速行駛到乙地所用時間為,全程運輸成本為 ……………………………………….4分

故所求函數(shù)及其定義域為 ………………………….6分

(2)依題意知a,v都為正數(shù),故有

當且僅當.即時上式中等號成立………………………...8分

(1)若,即時則當時,全程運輸成本y最小.10分

(2)若,即時,則當時,有

.

。也即當v=100時,全程運輸成本y最小.…….14分

綜上知,為使全程運輸成本y最小,當時行駛速度應(yīng)為千米/時;

時行駛速度應(yīng)為v=100千米/時!16分

20.解: (1)  ,當,單調(diào)遞減,當,單調(diào)遞增.………………………………………………………………..2分

,t無解;

,即時,;

,即時,上單調(diào)遞增,;

所以.…………………………………………………………..6分

(2)  ,則,………………………………………..8分

設(shè),則,,單調(diào)遞減,,單調(diào)遞增,所以……………………….10分

因為對一切恒成立,所以;………………..12分

(3) 問題等價于證明,由⑴可知的最小值是,當且僅當時取到………………………………………………………….14分

設(shè),則,易得,當且僅當時取到,從而對一切,都有成立.……………………………..16分

 

 


同步練習冊答案