題目列表(包括答案和解析)
已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如下表.
①函數(shù)f(x)在[0,1]上是減函數(shù); ②如果當(dāng)x∈[-1,t]時,f(x)最大值是2,那么t的最大值為4; ③函數(shù)y=f(x)-a有4個零點,則1≤a<2; ④若f(x)在[-1,5]上的極小值為-2,且 y=t與f(x)有兩個交點,則-2<t<1. 其中真命題的個數(shù)是( 。 |
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有≤成立,求實數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域為
由,得
當(dāng)x變化時,,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即
令,得
①當(dāng)時,,在上恒成立。因此在上單調(diào)遞減.從而對于任意的,總有,即在上恒成立,故符合題意.
②當(dāng)時,,對于,,故在上單調(diào)遞增.因此當(dāng)取時,,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.
當(dāng)時,
在(2)中取,得 ,
從而
所以有
綜上,,
已知函數(shù)的圖象過坐標(biāo)原點O,且在點處的切線的斜率是.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.
【解析】第一問當(dāng)時,,則。
依題意得:,即 解得
第二問當(dāng)時,,令得,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
(Ⅰ)當(dāng)時,,則。
依題意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①當(dāng)時,,令得
當(dāng)變化時,的變化情況如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
又,,。∴在上的最大值為2.
②當(dāng)時, .當(dāng)時, ,最大值為0;
當(dāng)時, 在上單調(diào)遞增!在最大值為。
綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;
當(dāng)時,即時,在區(qū)間上的最大值為。
(Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
若,則代入(*)式得:
即,而此方程無解,因此。此時,
代入(*)式得: 即 (**)
令 ,則
∴在上單調(diào)遞增, ∵ ∴,∴的取值范圍是。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對任意,,不等式 恒成立,求實數(shù)的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。
解: (I)的定義域是 ......1分
............. 2分
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是 ........4分
(II)若對任意不等式恒成立,
問題等價于, .........5分
由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當(dāng)b<1時,;
當(dāng)時,;
當(dāng)b>2時,; ............8分
問題等價于 ........11分
解得b<1 或 或 即,所以實數(shù)b的取值范圍是
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com