故當時.有.即當時..[點評]本小題主要考查函數(shù).不等式和導數(shù)的應用等知識.考查綜合運用數(shù)學知識解決問題的能力.課堂小結 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域為

,得

當x變化時,,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當時,取,有,故時不合題意.當時,令,即

,得

①當時,,上恒成立。因此上單調遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當時,,對于,故上單調遞增.因此當取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.

時,

                      

                      

在(2)中取,得

從而

所以有

     

     

     

     

      

綜上,,

 

查看答案和解析>>

已知數(shù)列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設 (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結論。

解:(Ⅰ)當時,由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設,,

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數(shù)學歸納法)①當時, ,命題成立;

   ②假設時,命題成立,即,

   則當時,

    即

故當時,命題成立.

綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

②由于,

所以,

從而.

也即

 

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調遞減;當單調遞增,故當時,取最小值

于是對一切恒成立,當且僅當.       、

時,單調遞增;當時,單調遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調遞減;當時,單調遞增.故當,

從而,

所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數(shù)研究函數(shù)單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質進行分析判斷.

 

查看答案和解析>>

某省環(huán)保研究所對市中心每天環(huán)境放射性污染情況進行調查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時刻(時) 的關系為,其中是與氣象有關的參數(shù),且

(1)令, ,寫出該函數(shù)的單調區(qū)間,并選擇其中一種情形進行證明;

(2)若用每天的最大值作為當天的綜合放射性污染指數(shù),并記作,求;

(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標?

【解析】第一問利用定義法求證單調性,并判定結論。

第二問(2)由函數(shù)的單調性知,

,即t的取值范圍是. 

時,記

 

上單調遞減,在上單調遞增,

第三問因為當且僅當時,.

故當時不超標,當時超標.

 

查看答案和解析>>

已知函數(shù)為實數(shù)).

(Ⅰ)當時,求的最小值;

(Ⅱ)若上是單調函數(shù),求的取值范圍.

【解析】第一問中由題意可知:. ∵ ∴  ∴.

時,; 當時,. 故.

第二問.

時,,在上有遞增,符合題意;  

,則,∴上恒成立.轉化后解決最值即可。

解:(Ⅰ) 由題意可知:. ∵ ∴  ∴.

時,; 當時,. 故.

(Ⅱ) .

時,,在上有遞增,符合題意;  

,則,∴上恒成立.∵二次函數(shù)的對稱軸為,且

  .   綜上

 

查看答案和解析>>


同步練習冊答案