題目列表(包括答案和解析)
設(shè)函數(shù),若為函數(shù)的一個極值點,則下列圖象不可能為的圖象是
【答案】D
【解析】設(shè),∴,
又∴為的一個極值點,
∴,即,
∴,
當(dāng)時,,即對稱軸所在直線方程為;
當(dāng)時,,即對稱軸所在直線方程應(yīng)大于1或小于-1.
【解析】T,i關(guān)系如下圖:
T | 1 |
|
|
|
|
i | 2 | 3 | 4 | 5 | 6 |
【答案】
如圖所示,四面體被一平面所截,截面是一個平行四邊形.求證:;
【答案】(理)證明:EH∥FG,EH面,面
EH∥面,又CD面,EH∥CD, 又EH面EFGH,CD面EFGH
EH∥BD
【解析】本試題主要是考查了空間四面體中線面位置關(guān)系的判定。
要證明線面平行可知通過線線平行,結(jié)合判定定理得到結(jié)論。
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當(dāng)時單調(diào)遞減;當(dāng)時單調(diào)遞增,故當(dāng)時,取最小值
于是對一切恒成立,當(dāng)且僅當(dāng). 、
令則
當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.
故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng),即
從而,又
所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.
【答案】
【解析】因為,,,所以圓的半徑為3,所以PO=5,連接OC,在三角形POC中,,即,所以。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com