(3)了解證明不等式的基本方法:比較法.綜合法.分析法.9Ⅳ.題型示例 0 查看更多

 

題目列表(包括答案和解析)

已知點P在曲線C:y=
1
x
(x>1)上,設(shè)曲線C在點P處的切線為l,若l與函數(shù)y=kx(k>0)的圖象的交點為A,與x軸的交點為B,設(shè)點P的橫坐標(biāo)為t,A、B的橫坐標(biāo)分別為xA、xB,記f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=1,an=f(
an-1
)
(n≥2),數(shù)列{bn}滿足bn=
1
an
-
k
3
,求an與bn
(Ⅲ)在(Ⅱ)的條件下,當(dāng)1<k<3時,證明不等式:a1+a2+…+an
3n-8k
k

查看答案和解析>>

已知點P在曲線C:y=
1
x
 (x>1)
上,曲線C在點P處的切線與函數(shù)y=kx(k>0)的圖象交于點A,與x軸交于點B,設(shè)點P的橫坐標(biāo)為t,點A、B的橫坐標(biāo)分別為xA、xB,記f(t)=xA•xB
(1)求f(t)的解析式;
(2)設(shè)數(shù)列{an}滿足a1=1,an=f(
an-1
) (n≥2 且 x∈N*)
,求數(shù)列{an}的通項公式;
(3)在 (2)的條件下,當(dāng)1<k<3時,證明不等式a1+a2+…+an
3n-8k
k

查看答案和解析>>

已知點P在曲線C:y=(x>1)上,設(shè)曲線C在點P處的切線為l,若l與函數(shù)y=kx(k>0)的圖象的交點為A,與x軸的交點為B,設(shè)點P的橫坐標(biāo)為t,A、B的橫坐標(biāo)分別為xA、xB,記f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=1,an=(n≥2),數(shù)列{bn}滿足bn=,求an與bn;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)1<k<3時,證明不等式:a1+a2+…+an

查看答案和解析>>

已知點P在曲線C:y=(x>1)上,設(shè)曲線C在點P處的切線為l,若l與函數(shù)y=kx(k>0)的圖象的交點為A,與x軸的交點為B,設(shè)點P的橫坐標(biāo)為t,A、B的橫坐標(biāo)分別為xA、xB,記f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=1,an=(n≥2),數(shù)列{bn}滿足bn=,求an與bn;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)1<k<3時,證明不等式:a1+a2+…+an

查看答案和解析>>

已知點P在曲線C:上,曲線C在點P處的切線與函數(shù)y=kx(k>0)的圖象交于點A,與x軸交于點B,設(shè)點P的橫坐標(biāo)為t,點A、B的橫坐標(biāo)分別為xA、xB,記f(t)=xA•xB
(1)求f(t)的解析式;
(2)設(shè)數(shù)列{an}滿足,求數(shù)列{an}的通項公式;
(3)在 (2)的條件下,當(dāng)1<k<3時,證明不等式

查看答案和解析>>


同步練習(xí)冊答案